早教吧作业答案频道 -->数学-->
在平行四边形ABCD中,对角线AC⊥AB,∠BAC与∠ACB的角平分线交于点E,过E作EF∥BC分别交AC,DC于G,F,过E作EH∥AB分别交AC,AD于K,H.(1)若∠B=60°,CF=2,求EG的长;(2)求证:GF=GK+KH.
题目详情
在平行四边形ABCD中,对角线AC⊥AB,∠BAC与∠ACB的角平分线交于点E,过E作EF∥BC分别交AC,DC于G,F,过E作EH∥AB分别交AC,AD于K,H.

(1)若∠B=60°,CF=2,求EG的长;
(2)求证:GF=GK+KH.

(1)若∠B=60°,CF=2,求EG的长;
(2)求证:GF=GK+KH.
▼优质解答
答案和解析
(1) ∵EF∥BC,CE为∠ACB的角平分线,
∴∠AGE=∠CGF=2∠BCE,
∵∠AGE=∠ACE+∠CEG,
∴∠ACE=∠CEG,
∴GC=GE,
在直角三角形GCF中,GC=tan60°×FC=2
,
∴GE=2
;

(2)证明:过C作CM⊥EF交EF于M,
由(1)知GC=GE,
∵∠CGF=∠AGE,
在△CMG与△EKG中,
,
∴△CMG≌△EKG(AAS),
∴MG=GK,CM=EK,
∵EH∥AB,
∴∠BAE=∠AEH,
∵∠BAE=∠EAK,
∴∠EAK=∠AEK,
∴AK=EK,
∵EF∥AD,EH∥AB∥DC,
∴∠CFM=∠D=∠KHA,
又∵∠FCA=∠HKA=90°,CM=EK,
在△CMF与△AKH中,
,
∴△CMF≌△AKH(AAS),
∴FM=KH,
∵GF=FM+MG,
∴GF=GK+KH.
∴∠AGE=∠CGF=2∠BCE,
∵∠AGE=∠ACE+∠CEG,
∴∠ACE=∠CEG,
∴GC=GE,
在直角三角形GCF中,GC=tan60°×FC=2
3 |
∴GE=2
3 |

(2)证明:过C作CM⊥EF交EF于M,
由(1)知GC=GE,
∵∠CGF=∠AGE,
在△CMG与△EKG中,
|
∴△CMG≌△EKG(AAS),
∴MG=GK,CM=EK,
∵EH∥AB,
∴∠BAE=∠AEH,
∵∠BAE=∠EAK,
∴∠EAK=∠AEK,
∴AK=EK,
∵EF∥AD,EH∥AB∥DC,
∴∠CFM=∠D=∠KHA,
又∵∠FCA=∠HKA=90°,CM=EK,
在△CMF与△AKH中,
|
∴△CMF≌△AKH(AAS),
∴FM=KH,
∵GF=FM+MG,
∴GF=GK+KH.
看了 在平行四边形ABCD中,对角...的网友还看了以下:
已知集合A={第一象限角},B={锐角},C={小于90°的角},则下列关系中正确的是:A、A=B 2020-05-16 …
非互斥事件如何相加比如说A与B的交集不为空集(A与B互为非互斥事件)那么P(A并B)=P(A)+P 2020-06-08 …
P(A并B)=P(A)+P(B)-P(A交B)这个我没看懂.这是求并集为什么还要减去A和B的交集? 2020-07-30 …
集合的运算1.已知A={1,2,3,4},B={3,4,5},求A交集B,A并集B.2.已知A={ 2020-07-30 …
已知A=集合X是等腰三角形,B=集合X是直角三角形,求A并B和A交B已知A=集合X是等腰三角形,B 2020-07-30 …
1.已知集合A={(x,y)|x^2-y^2-y=4},B={(x,y)|x^2-xy-2y^2= 2020-07-30 …
若A并B=A并C,则一定有A.B=CB.A交B=A交CC.A交B的补集=A并C的补集D.B交A的补 2020-07-30 …
以知U=R,A={X/X小于等于0,或X大于等于2},B={X/X小于2,或X大于等于3}.求A交 2020-07-30 …
急,今天就要已知全集I={x丨x≤8,且x属于Z+},集合A={2,4,6,8},B={1,3,5 2020-08-02 …
求教证明恒等式?(1)A并(A交B)=A交(A并B)=A(2)A-B=A交[B(3)A并({A交B) 2020-12-22 …