早教吧作业答案频道 -->数学-->
求解答数列极限定义问题定义是:设{Xn}为一数列,如果存在常数a,对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时,不等式|Xn-a|N.
题目详情
求解答数列极限定义问题
定义是:设{Xn}为一数列,如果存在常数a,对于任意给定的正数ε (不论它多么小),总存在正整数N,使得当n>N时,不等式|Xn-a|N.
定义是:设{Xn}为一数列,如果存在常数a,对于任意给定的正数ε (不论它多么小),总存在正整数N,使得当n>N时,不等式|Xn-a|N.
▼优质解答
答案和解析
你这么理解,极限的概念就是无限接近,因为是接近不是真正等于,那就允许存在一个差距ε,而且这个差距ε是非常非常小的(没有最小,只有更小)
而数列也是个无限长的概念,它可以有n个项(n是多少?你说多少就有多少),根据数列极限定义,n越大就越接近那个极限a,因为是接近不是真正等于,所以也会存在一个差距(|Xn-a|).
现在我们通俗得解释课本上这一定义:数列的极限也就是数列越后面的数越接近那个极限值a.如何表示呢?理论定义就假想了一个ε,它想多小就多小,可惜它一旦被找出就是个固定的数(不能变小了).而无论你找出了是个多么小的ε,数列中总能在队列后面找出某一项(N),从这一项开始后的每一个数列中的数,与极限a的差距都比ε更小(|Xn-a|N,因为我们必须保证N后的每一个数都要有一个接近a的趋势(与a的差距只能越来越小,不能越来越大).否则,就不能称为极限了(比如,虽然在第9999项的x与a的差距小于了某个ε,但从10000项开始后的数,x与a的差距竟然越来越大了,那极限当然不可能是a啦)
而数列也是个无限长的概念,它可以有n个项(n是多少?你说多少就有多少),根据数列极限定义,n越大就越接近那个极限a,因为是接近不是真正等于,所以也会存在一个差距(|Xn-a|).
现在我们通俗得解释课本上这一定义:数列的极限也就是数列越后面的数越接近那个极限值a.如何表示呢?理论定义就假想了一个ε,它想多小就多小,可惜它一旦被找出就是个固定的数(不能变小了).而无论你找出了是个多么小的ε,数列中总能在队列后面找出某一项(N),从这一项开始后的每一个数列中的数,与极限a的差距都比ε更小(|Xn-a|N,因为我们必须保证N后的每一个数都要有一个接近a的趋势(与a的差距只能越来越小,不能越来越大).否则,就不能称为极限了(比如,虽然在第9999项的x与a的差距小于了某个ε,但从10000项开始后的数,x与a的差距竟然越来越大了,那极限当然不可能是a啦)
看了 求解答数列极限定义问题定义是...的网友还看了以下:
现有一个数x和n如何用尽可能少的操作数算出x的n次方(每次加减乘除算一次操作,且你可以认为n挺大) 2020-04-07 …
计算1.求级数∑∞(x-1)^n/n的收敛域与和函数.2.试将函数f(x)=arcsinx/x展成 2020-04-12 …
问一个数学题阅读下列材料:如果一个数x的n(n是大于1的整数)次方等于a,这个数x就叫做a的n次方 2020-05-14 …
现在有一个数x和n,如何用尽可能少的操作数算出x的n次方?(每次加减乘除算一次操作) 2020-05-17 …
求幂级数∑[(x的n次方)/n]的和函数f(x)等于多少,(幂级数∑的上面为∞,下面为n=1) 2020-07-29 …
假设n是大于3的自然数,x的n次方加y的n次方等于z的n次方,x,y,z是不可能大于0的自然数.应该 2020-11-01 …
设x在数轴上对应点M,若将M点向右移动3个单位长度后再向左移动4个单位长度得到N点,则M点对应的有理 2020-11-18 …
请问从1的n次方到任意数X的n次方合计数是怎样计算的?有一系列数如下:nnnnnn1+2+3+4+5 2020-12-23 …
x是0与1之间的数,函数x的N次方乘以(1-x)的极值怎么求,N为自然数. 2020-12-31 …
若xy是互不为零的相反数且n为正整数则有()A,x的n次方,y的n次方一定互为相反数x的n次方,y的 2021-02-01 …