早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设各项均为正整数的无穷等差数列{an},满足a54=2014,且存在正整数k,使a1,a54,ak成等比数列,则公差d的所有可能取值之和为.

题目详情
设各项均为正整数的无穷等差数列{an},满足a54=2014,且存在正整数k,使a1,a54,ak成等比数列,则公差d的所有可能取值之和为______.
▼优质解答
答案和解析
∵a54=2014,∴a1+53d=2014,
a1
53
+d=38,d>0,且为正整数,
∴a1是53的倍数,
∵a1,a54,ak成等比数列,
∴a542=a1ak=2×2×19×19×53×53
(1)若a1=53,53+53d=2014,d=37,
(2)若a1=2×53,106+53d=2014,d=36,
(3)若a1=4×53,212+53d=2014,d=34
(4)a1=1007,1007+53d=2014,53d=1007,d=19
∴公差d的所有可能取值之和为37+36+34+19=126.
故答案为:126.