早教吧作业答案频道 -->其他-->
已知:四边形ABCD中,对角线的交点为O,E是OC上的一点,过点A作AG⊥BE于点G,AG、BD交于点F.(1)如图1,若四边形ABCD是正方形,求证:OE=OF;(2)如图2,若四边形ABCD是菱形,∠ABC=120°.探
题目详情
已知:四边形ABCD中,对角线的交点为O,E是OC上的一点,过点A作AG⊥BE于点G,AG、BD交于点F.
(1)如图1,若四边形ABCD是正方形,求证:OE=OF;
(2)如图2,若四边形ABCD是菱形,∠ABC=120°.探究线段OE与OF的数量关系,并说明理由;
(3)如图3,若四边形ABCD是等腰梯形,∠ABC=α,且AC⊥BD.结合上面的活动经验,探究线段OE与OF的数量关系为______(直接写出答案).

(1)如图1,若四边形ABCD是正方形,求证:OE=OF;
(2)如图2,若四边形ABCD是菱形,∠ABC=120°.探究线段OE与OF的数量关系,并说明理由;
(3)如图3,若四边形ABCD是等腰梯形,∠ABC=α,且AC⊥BD.结合上面的活动经验,探究线段OE与OF的数量关系为______(直接写出答案).

▼优质解答
答案和解析
证明:(1)∵四边形ABCD是正方形,对角线的交点为O,
∴AC=BD,OA=OC,OB=OD,
∴OA=OB,
∵AC⊥BD,AG⊥BE,
∴∠FAO+∠AFO=90°,∠EAG+∠AEG=90°,
∴∠AFO=∠BEO,
在△AOF和△BOE中,
,
∴△AOF≌△BOE(AAS),
∴OE=OF;
(2)OF=
OE.
理由:∵四边形ABCD是菱形,对角线的交点为O,∠ABC=120°
∴AC⊥BD,∠ABO=60°,
∴∠FAO+∠AFO=90°,
∵AG⊥BE,
∴∠EAG+∠BEA=90°.
∴∠AFO=∠BEO,
又∵∠AOF=∠BOE=90°,
∴△AOF∽△BOE,
∴
=
,
∵∠ABO=60°,AC⊥BD,
∴
=tan60°=
.
∴OF=
OE;
(3)∵四边形ABCD是等腰梯形,
∴∠OBC=∠OCB,
∵AC⊥BD,
∴∠OBC=45°,
∵∠ABC=α,
∴∠ABO=α-45°,
∵AG⊥BE,
∴∠OAF+∠AEG=90°,
∵AC⊥BD,
∴∠OBE+∠AEG=90°,
∴∠OAF=∠OBE,
又∵∠AOF=∠BOE=90°,
∴△AOF∽△BOE,
∴
=
,
∵∠ABO=α-45°,AC⊥BD,
∴
=tan(α-45°),
∴OF=tan(α-45°)OE.
故答案为:OF=tan(α-45°)OE.
∴AC=BD,OA=OC,OB=OD,
∴OA=OB,
∵AC⊥BD,AG⊥BE,
∴∠FAO+∠AFO=90°,∠EAG+∠AEG=90°,
∴∠AFO=∠BEO,
在△AOF和△BOE中,
|
∴△AOF≌△BOE(AAS),
∴OE=OF;
(2)OF=
3 |
理由:∵四边形ABCD是菱形,对角线的交点为O,∠ABC=120°
∴AC⊥BD,∠ABO=60°,
∴∠FAO+∠AFO=90°,
∵AG⊥BE,
∴∠EAG+∠BEA=90°.
∴∠AFO=∠BEO,
又∵∠AOF=∠BOE=90°,
∴△AOF∽△BOE,
∴
OF |
OE |
AO |
OB |
∵∠ABO=60°,AC⊥BD,
∴
AO |
OB |
3 |
∴OF=
3 |
(3)∵四边形ABCD是等腰梯形,
∴∠OBC=∠OCB,
∵AC⊥BD,
∴∠OBC=45°,
∵∠ABC=α,
∴∠ABO=α-45°,
∵AG⊥BE,
∴∠OAF+∠AEG=90°,
∵AC⊥BD,
∴∠OBE+∠AEG=90°,
∴∠OAF=∠OBE,
又∵∠AOF=∠BOE=90°,
∴△AOF∽△BOE,
∴
OF |
OE |
OA |
OB |
∵∠ABO=α-45°,AC⊥BD,
∴
OA |
OB |
∴OF=tan(α-45°)OE.
故答案为:OF=tan(α-45°)OE.
看了 已知:四边形ABCD中,对角...的网友还看了以下:
图1表示某种动物分裂过程中不同时期每条染色体上DNA分子数目的变化,图2表示该种动物细胞分裂过程中 2020-05-13 …
将一组数字按如图2方式排列,若(m,n)表示第m排从左到右第n个数,则(5,4)表示的数是____ 2020-05-15 …
关于一元二次方程解的情况题:已知实数a,b,c,且a^2+b^2+c^2=a+b+c=2,求a,b 2020-05-17 …
一、分解因式①7(a-1)+x(a-1)②3(a-b)^2+6(b-a)③2(m-n)^2-m(m 2020-06-05 …
因式分解(ab+cd)(a^2-b^2+c^2-d^2)+(ac+bd)(a^2+b^2-……因式 2020-06-12 …
已知a、b、c两两不等,且满足a^2+b^2+mab=b^2+c^2+mbc=c^2+a^2+mc 2020-07-20 …
1、已知实数a、b满足条件a^2+b^2+a^2*b^2=4ab-1,求a、b的值2、已知a、b、 2020-07-31 …
基本不等式的使用问题a+b=1,求(a+2)^2+(b+2)^2的最小值.在这道题里,如果使用基本 2020-08-03 …
1.已知a*x^3=b*y^3=c*z^3且1/x+1/y+1/z=1求证(a*x^2+b*y^2+ 2020-10-31 …
已知直线l的同侧有A,B两点(图1),要在直线l上确定一点P,使PA+PB的值最小.小明同学的做法如 2020-11-06 …