早教吧作业答案频道 -->其他-->
高等代数多项式定理的逆定理证明没看懂?逆定理:设p(x)是次数大于零的多项式,如果对于任何多项式f(x),由p(x)|f(x)g(x)可以推出p(x)|f(x)或p(x)|g(x),那么p(x)是不可约多项式.反证法,设p(x)可约,则有p
题目详情
高等代数多项式定理的逆定理证明没看懂?
逆定理:设p(x)是次数大于零的多项式,如果对于任何多项式f(x),由p(x)|f(x)g(x)可以推出p(x)|f(x)或p(x)|g(x),那么p(x)是不可约多项式.
反证法,设p(x)可约,则有p(x)=p1(x)|p2(x).那么由假设可得p(x)|p1(x)或p(x)|p2(x),这是不可能的,因为后面两个多项式的次数低于p(x)的次数,于是得证.答案看不懂,没有一处看懂,我会设p(x)可约,所以设p(x)=p1(x)p2(x),p1(x),p2(x)次数都小于p(x)的次数,
逆定理:设p(x)是次数大于零的多项式,如果对于任何多项式f(x),由p(x)|f(x)g(x)可以推出p(x)|f(x)或p(x)|g(x),那么p(x)是不可约多项式.
反证法,设p(x)可约,则有p(x)=p1(x)|p2(x).那么由假设可得p(x)|p1(x)或p(x)|p2(x),这是不可能的,因为后面两个多项式的次数低于p(x)的次数,于是得证.答案看不懂,没有一处看懂,我会设p(x)可约,所以设p(x)=p1(x)p2(x),p1(x),p2(x)次数都小于p(x)的次数,
▼优质解答
答案和解析
你的想法是对的……(猜测是你书上那个整除符号印错位置了吧)正确做法:
若p(x)可约,设p(x)=p1(x)p2(x),则p(x) | p1(x)p2(x),但p(x)既不整除p1(x)也不整除p2(x),矛盾,所以p(x)不可约.
若p(x)可约,设p(x)=p1(x)p2(x),则p(x) | p1(x)p2(x),但p(x)既不整除p1(x)也不整除p2(x),矛盾,所以p(x)不可约.
看了 高等代数多项式定理的逆定理证...的网友还看了以下:
数学奇偶函数若f(x)是R上的偶函数,g(x)是R上的奇函数,且满足f(x)+g(x)=x-1分之 2020-05-16 …
物理公式在确定物理量数量关系的同时,也确定了物理量间的单位关系,下面给出的关系式中,l是长度,v是 2020-06-27 …
数据库模式分解请给出答案及其分析过程!给定关系模式R(U,F),其中,属性集U={A,B,C,D, 2020-07-10 …
乙二酸(HOOC—COOH)俗称草酸,其主要物理常数如下:名称分子式颜色、状态溶解性(g)熔点(℃ 2020-07-18 …
乙二酸(HOOC—COOH)俗称草酸,其主要物理常数如下:名称分子式颜色、状态溶解性(g)熔点(℃ 2020-07-18 …
行测无理式数列根号5,根号8,根号11,根号5,根号13,(),()急 2020-07-30 …
设f(x),g(x)是数域F上的多项式,且a,b,c,d∈F,若ad-bc≠0,证明(af(x)设 2020-07-31 …
2014年四川高考理科数学第21题不会做,果然是压轴题啊,真的有点难度啊已知函数f(x)=e^x- 2020-08-02 …
有一个定理是:若f(x)|g(x)且g(x)|f(x)那么g(x)和f(x)相差一个零次因式可是如 2020-08-02 …
根据表格中速度这一栏的范例进行填写,把下面表格空白栏补充完整.(注意:如果公式中有g=9.8N/kg 2020-11-28 …