早教吧作业答案频道 -->其他-->
如图1,在△ABB′和△ACC′中,∠BAB′=∠CAC′=m°,AC=AC′,AB=AB′.(1)不添加辅助线的前提下,请写出图中满足旋转变换的两个三角形分别是:;旋转角度是°;(2)线段BC、B′C
题目详情
如图1,在△ABB′和△ACC′中,∠BAB′=∠CAC′=m°,AC=AC′,AB=AB′.

(1)不添加辅助线的前提下,请写出图中满足旋转变换的两个三角形分别是:______;旋转角度是______°;
(2)线段BC、B′C′的数量关系是:______;试求出BC、B′C′所在直线的夹角:______;
(3)随着△ACC′绕点A的旋转,(2)的结论是否依然成立?请从图2、图3中任选一个证明你的结论;
(4)利用解决上述问题所获得的经验探索下面的问题:
如图4,等边△ABC外一点D,且∠BDC=60°,连接AD,试探索线段AD、CD、BD的数量关系.

(1)不添加辅助线的前提下,请写出图中满足旋转变换的两个三角形分别是:______;旋转角度是______°;
(2)线段BC、B′C′的数量关系是:______;试求出BC、B′C′所在直线的夹角:______;
(3)随着△ACC′绕点A的旋转,(2)的结论是否依然成立?请从图2、图3中任选一个证明你的结论;
(4)利用解决上述问题所获得的经验探索下面的问题:
如图4,等边△ABC外一点D,且∠BDC=60°,连接AD,试探索线段AD、CD、BD的数量关系.
▼优质解答
答案和解析
(1)△ACB和△AC′B′,m°,
理由是:∵∠BAB′=∠CAC′=m°,
∴∠CAB=∠C′AB′=m°,
∵在△ACB和△AC′B′中
∴△ACB≌△AC′B′(SAS),
∴△ACB绕A点旋转能和△AC′B′重合,△ACB的边AC绕A点旋转∠CAC′到AC′,AB绕A点旋转∠BAB′到AB′,即旋转角度是m°,
(2)BC=B′C′,BC、B′C′所在直线的夹角是m°,
理由是:
延长B″C″交BC于E,如图1,
∵△ACB≌△AC′B′,
∴∠AB′C′=∠ABC,
∵∠BAB′=m°,
∴∠ABB′+∠AB′B=∠ABB′+∠AB′C′+∠BB′E=∠BB′E+∠ABB′+∠ABC=180°-m°,
∴∠BEB′=180°-(∠BB′E+∠ABB′+∠ABC)=180°-(180°-m°)=m°,
(3)结论还成立,
证明:如图2,
∵∠CAC′=∠BAB′,
∴∠CAC′+∠BAC′=∠BAB′+∠BAC′,
∴∠CAB=∠C′AB′,
在△ACB和△AC′B′中
∴△ACB≌△AC′B′(SAS),
∴BC=B′C,∠AB′C′=∠ABC,
∵∠BAB′=m°,
∴∠ABB′+∠AB′B=∠ABB′+∠AB′C′+∠BB′E=∠BB′E+∠ABB′+∠ABC=180°-m°,
∴∠BEB′=180°-(∠BB′E+∠ABB′+∠ABC)=180°-(180°-m°)=m°.
即BC=B′C′,BC、B′C′所在直线的夹角是m°,
即(2)中的结论还成立.
(4)
BD=AD+CD,
理由是:在BD上取一点E,使∠BAE=∠DAC,如图3,
∵△ABC是等边三角形,
∴AB=AC,∠ABC=∠ACB=∠BAC=60°=∠BDC,
∴∠ABC+∠ACB=∠ABE+∠EBC+∠ACB=120°,∠EBC+∠DCA+∠ACB=120°,
∴∠DCA=∠ABE,
在△ABE和△ACD中
∴△ABE≌△ACD(ASA),
∴BE=CD,AE=AD,
∵∠BAE=∠CAD,∠BAC=60°,
∴∠EAD=∠EAC+∠CAD=∠EAC+∠ABE=∠CAB=60°,
∵AE=AD,
∴△AED是等边三角形,
∴AD=DE,
∴BD=BE+DE=CD+AD,
即BD=AD+CD.
故答案为:△ACB和△AC′B
理由是:∵∠BAB′=∠CAC′=m°,
∴∠CAB=∠C′AB′=m°,
∵在△ACB和△AC′B′中
|
∴△ACB≌△AC′B′(SAS),
∴△ACB绕A点旋转能和△AC′B′重合,△ACB的边AC绕A点旋转∠CAC′到AC′,AB绕A点旋转∠BAB′到AB′,即旋转角度是m°,
(2)BC=B′C′,BC、B′C′所在直线的夹角是m°,
理由是:

延长B″C″交BC于E,如图1,
∵△ACB≌△AC′B′,
∴∠AB′C′=∠ABC,
∵∠BAB′=m°,
∴∠ABB′+∠AB′B=∠ABB′+∠AB′C′+∠BB′E=∠BB′E+∠ABB′+∠ABC=180°-m°,
∴∠BEB′=180°-(∠BB′E+∠ABB′+∠ABC)=180°-(180°-m°)=m°,
(3)结论还成立,

证明:如图2,
∵∠CAC′=∠BAB′,
∴∠CAC′+∠BAC′=∠BAB′+∠BAC′,
∴∠CAB=∠C′AB′,
在△ACB和△AC′B′中
|
∴△ACB≌△AC′B′(SAS),
∴BC=B′C,∠AB′C′=∠ABC,
∵∠BAB′=m°,
∴∠ABB′+∠AB′B=∠ABB′+∠AB′C′+∠BB′E=∠BB′E+∠ABB′+∠ABC=180°-m°,
∴∠BEB′=180°-(∠BB′E+∠ABB′+∠ABC)=180°-(180°-m°)=m°.
即BC=B′C′,BC、B′C′所在直线的夹角是m°,
即(2)中的结论还成立.
(4)

理由是:在BD上取一点E,使∠BAE=∠DAC,如图3,
∵△ABC是等边三角形,
∴AB=AC,∠ABC=∠ACB=∠BAC=60°=∠BDC,
∴∠ABC+∠ACB=∠ABE+∠EBC+∠ACB=120°,∠EBC+∠DCA+∠ACB=120°,
∴∠DCA=∠ABE,
在△ABE和△ACD中
|
∴△ABE≌△ACD(ASA),
∴BE=CD,AE=AD,
∵∠BAE=∠CAD,∠BAC=60°,
∴∠EAD=∠EAC+∠CAD=∠EAC+∠ABE=∠CAB=60°,
∵AE=AD,
∴△AED是等边三角形,
∴AD=DE,
∴BD=BE+DE=CD+AD,
即BD=AD+CD.
故答案为:△ACB和△AC′B
看了 如图1,在△ABB′和△AC...的网友还看了以下:
一张菱形硬纸板ABCD的中心是点O,沿它的一条对角线AC对折,使BO垂直于DO,这时二面角B-AC- 2020-03-30 …
已知如图,则下列叙述不正确的是()A.点O不在直线AC上B.图中共有5条线段C.射线AB与射线BC 2020-05-14 …
如图,在斜三棱柱ABC-A1B1C1的底面△ABC中,∠BAC=90°,且BC1⊥AC,过C1作C 2020-07-12 …
如图▱ABC左中,对角线AC、B左相交于点O,若AC=8cm,则OC=cm. 2020-07-12 …
B是线段AC的中点,过点C的直线L与AC成60的角如右图,B是直线AC上一点,过点C的直线l于AC 2020-07-13 …
(2010•温州)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1 2020-07-21 …
如图,小明画了一个角MON=80度,点A、B分别射线OM、ON上移动,角AOBD的角平分线AC与B 2020-07-24 …
在平面直角坐标系中,点A(a,a),以点B(0,4)为圆心,半径为1的圆上有一点C,直线AC与B相 2020-07-31 …
如图,正方体AC′的棱长为a.(1)写出与AC平行的面对角线;(2)写出与AC异面的面对角线;(3 2020-07-31 …
立体几何题在空间四边形ABCD各边AB.BC.CD.DA上分别取E、F、G、H四点,如果与EF、G 2020-08-02 …