早教吧作业答案频道 -->数学-->
利用数学归纳法证明:1-2+4-...+(-2)^(N-1)=(1-(-2)^N)/3
题目详情
利用数学归纳法证明:1-2+4-...+(-2)^(N-1)=(1-(-2)^N)/3
▼优质解答
答案和解析
这个就是等比数列的求和公式啊
a1=1
q=-2
an=(-2)^(n-1)
Sn=[1-(-2)^]/[1-(-2)]=1/3-(-2)^n/3
数学归纳法证明如下:
1.n=1时,左边=1
右边=2/3+1/3=1=左边
2.假设n=k时,1-2+4-8+...+(-1)^k-1*2^k-1=(-1)^k-1*2^k/3+1/3
那么n=k+1时,
左边=1-2+4-8+...+(-1)^k-1*2^k-1+(-2)^k
=(-1)^(k-1)*2^k/3+1/3+(-1)^k*2^k
=(-1)^k*2^k*(3-1)/3+1/3
=(-1)^k*2^(k+1)/3+1/3
=右边
所以n=k+1时也成立
a1=1
q=-2
an=(-2)^(n-1)
Sn=[1-(-2)^]/[1-(-2)]=1/3-(-2)^n/3
数学归纳法证明如下:
1.n=1时,左边=1
右边=2/3+1/3=1=左边
2.假设n=k时,1-2+4-8+...+(-1)^k-1*2^k-1=(-1)^k-1*2^k/3+1/3
那么n=k+1时,
左边=1-2+4-8+...+(-1)^k-1*2^k-1+(-2)^k
=(-1)^(k-1)*2^k/3+1/3+(-1)^k*2^k
=(-1)^k*2^k*(3-1)/3+1/3
=(-1)^k*2^(k+1)/3+1/3
=右边
所以n=k+1时也成立
看了 利用数学归纳法证明:1-2+...的网友还看了以下:
用数学归纳法证明:(n+1)(n+2)(n+3)+.+(n+n)=(2^n)*1*3*.(2n-1 2020-04-05 …
完全归纳法证明相等∑j=n/2(n+1),j=1到n,这个是提前给出的,可以不用证明在接下来的完全 2020-04-27 …
利用数学归纳法证明“(n+1)(n+2)(n+3)…(n+n)=2n×1×3×…×(2n-1)(n 2020-08-01 …
用数学归纳法证明(n+1)(n+2)…(n+n)=2^n·1·3·……·(2n-1)(n∈N*), 2020-08-01 …
用数学归纳法证明[2^n-(-1)^n]/3是奇数用数学归纳法证明[2^n-(-1)^n]/3是奇 2020-08-01 …
1.用数学归纳法证明f(n)=1+(1/2)+(1/3)+.+1/(2^n)的过程中,从n=k到n 2020-08-01 …
用数学归纳法证明:(n+1)(n+2)(n+3)+.+(n+n)=(2^n)*1*3*.(2n-1 2020-08-01 …
数学归纳法:难道错了!证明An=(1+1/n)^(1/n)为有理数证明:n=1时显然成立,假设n= 2020-08-01 …
用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3·5·…(2n-1)(n∈N*)时, 2020-08-03 …
用数学归纳法证明(n+1)(n+2)…(n+n)=2n1●3●…●(2n﹣1)(n∈N)时,从“k 2020-08-03 …