早教吧作业答案频道 -->数学-->
如图,已知直线y=x+4与两坐标轴分别交于A、B两点,⊙C的圆心坐标为(2,O),半径为2,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值和最大值分别是.
题目详情
| 如图,已知直线y=x+4与两坐标轴分别交于A、B两点,⊙C的圆心坐标为 (2,O),半径为2,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值和最大值分别是 . |
▼优质解答
答案和解析
| 8﹣2 和8+2 |
| 首先由一次函数解析式求出OA、OB的长,而△ABE中,BE边上的高是OA,且OA为定值,所以求△ABE面积的最小值和最大值,转化为求BE的最小值和最大值。过点A作⊙C的两条切线AD、AD′,当动点运动到D点时,BE最小,即△ABE面积最小;当动点运动到D′点时,BE最大,即△ABE面积最大。最后根据比例求出BE 、BE′的值,进而求出△ABE面积的最小值和最大值. 由y=x+4得: 当x=0时,y=4,当y=0时,x=﹣4, ∴OA=4,OB=4, ∵△ABE的边BE上的高是OA, ∴△ABE的边BE上的高是4, ∴要使△ABE的面积最大或最小,只要BE取最大值或最小值即可, 过A作⊙C的两条切线,如图, 当动点运动到D点时,BE最小,即△ABE面积最小; 当动点运动到D′点时,BE最大,即△ABE面积最大; ∵x轴⊥y轴,OC为半径, ∴EE′是⊙C切线, ∵AD′是⊙C切线, ∴OE′=E′D′, 设E′O=E′D′=x, ∵AC=4+2=6,CD′=2,AD′是切线, ∴∠AD′C=90°,由勾股定理得:AD′=4 ,∴sin∠CAD′= = ,∴ = ,解得:x= ,∴BE′=4+ ,BE=4﹣ ,∴△ABE的最小值是 ×(4﹣ )×4=8﹣2 ,最大值是: ×(4+ )×4=8+2 ,故答案为:8﹣2 和8+2 . |
看了 如图,已知直线y=x+4与两...的网友还看了以下:
如图,在平面直角坐标系xOy中,抛物线y=2mx2-2x与x轴负半轴交于点A,顶点为B,且对称轴与 2020-05-13 …
如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P 2020-05-16 …
如图,在平面直角坐标系xoy中,抛物线y=x2+bx+c与x轴交于a、b两点(点a在点b的左侧), 2020-05-16 …
(2009•河池)如图,已知抛物线y=x2+4x+3交x轴于A、B两点,交y轴于点C,抛物线的对称 2020-06-14 …
如图,直线AB与X轴Y轴分别交于点如图直线AB与x轴交于点AB点A的坐标是(2,0)角ABO=30 2020-06-14 …
如图1,在平面直角坐标系中,一次函数y=-2x+12的图象与x轴交于点A,与y轴交于点B,与直线O 2020-06-14 …
如图,在平面直角坐标系中,直线AB分别与X轴正半轴、Y轴正半轴交于点A、B,OA=3,OB=根号3 2020-06-27 …
一次函数问题(1)已知一次函数的图像经过点(1,2),且图像与x轴交点的横坐标和与y轴交点的纵坐标 2020-08-02 …
如图,一个二次函数的图像与x轴交于A,B两点(A在B的左边),与y轴交于点c,起顶点坐标(-1,-8 2021-01-10 …
图象与Y轴的交点关于对称轴的对称点的坐标图象与x轴交点坐标是(-1,0)(-2,0)图象与y轴的交点 2021-01-15 …
和8+2
=
,
=
,
×(4﹣