早教吧作业答案频道 -->数学-->
利用我们学过的知识,可以导出下面这个形式优美的等式:a2+b2+c2-ab-bc-ac=12[(a-b)2+(b-c)2+(c-a)2],该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.(1
题目详情
利用我们学过的知识,可以导出下面这个形式优美的等式:
a2+b2+c2-ab-bc-ac=
[(a-b)2+(b-c)2+(c-a)2],
该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.
(1)请你检验这个等式的正确性.
(2)若a=2005,b=2006,c=2007,你能求出a2+b2+c2-ab-bc-ac的值吗?
(3)若a、b、c,分别是三角形的三条边,且满足a2+b2+c2-ab-bc-ac=0,试猜想此三角形三边之间有怎样的数量关系?是什么样的三角形?
a2+b2+c2-ab-bc-ac=
1 |
2 |
该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.
(1)请你检验这个等式的正确性.
(2)若a=2005,b=2006,c=2007,你能求出a2+b2+c2-ab-bc-ac的值吗?
(3)若a、b、c,分别是三角形的三条边,且满足a2+b2+c2-ab-bc-ac=0,试猜想此三角形三边之间有怎样的数量关系?是什么样的三角形?
▼优质解答
答案和解析
(1)等式右边=
(a2-2ab+b2+b2-2bc+c2+a2-2ac+c2),
=
×2(a2+b2+c2-ab-bc-ac),
=a2+b2+c2-ab-bc-ac=等式左边.
∴等式a2+b2+c2-ab-bc-ac=
[(a-b)2+(b-c)2+(c-a)2]成立.
(2)∵a=2005,b=2006,c=2007,
∴a2+b2+c2-ab-bc-ac=
[(a-b)2+(b-c)2+(c-a)2]=
×[(-1)2+(-1)2+22]=3.
(3)∵a2+b2+c2-ab-bc-ac=
[(a-b)2+(b-c)2+(c-a)2]=0,
∴a-b=0,b-c=0,c-a=0,
∴a=b=c,
∵a、b、c分别是三角形的三条边,
∴该三角形为等边三角形.
1 |
2 |
=
1 |
2 |
=a2+b2+c2-ab-bc-ac=等式左边.
∴等式a2+b2+c2-ab-bc-ac=
1 |
2 |
(2)∵a=2005,b=2006,c=2007,
∴a2+b2+c2-ab-bc-ac=
1 |
2 |
1 |
2 |
(3)∵a2+b2+c2-ab-bc-ac=
1 |
2 |
∴a-b=0,b-c=0,c-a=0,
∴a=b=c,
∵a、b、c分别是三角形的三条边,
∴该三角形为等边三角形.
看了 利用我们学过的知识,可以导出...的网友还看了以下:
如图,在梯形ABCD中,AD平行于BC,∠B=90°,BC=6,AD=3,∠DCB=30°,点E, 2020-05-16 …
已知a+b+c=0,试求a^2/(2a^2+bc)+b^2/(2b^2+ac)+c^2/(2c^2 2020-06-11 …
关于分式交叉相乘分数A/B>C/D假设四个数都是正数那么应该是AD>BC还是BC>AD如果是其中一 2020-06-14 …
如图,正方形ABCD的边长为3a,两动点E、F分别从顶点B、C同时开始以相同速度沿BC、CD运动, 2020-07-19 …
如图,正方形ABCD的边长为3a,两动点E、F分别从顶点B、C同时开始以相同速度沿BC、CD运动, 2020-08-02 …
(2007•中山)如图,正方形ABCD的边长为3a,两动点E、F分别从顶点B、C同时开始以相同速度 2020-08-02 …
在梯行ABCD中,AD平行BC.角B等于40度.角C等于50度,E,M,F,N分别为AB,BC,CD 2020-11-01 …
一个式子里如果有乘号和除号要先算乘号还是先算除号吗?还是依次算?比如a除以b乘以c是a/bc还是ac 2020-11-07 …
下列不属于递进复句的一组关联词是()A.不但A,而且不仅A,还BB.不但不A,反倒还B非但没A,反而 2020-11-26 …
a/b/c到底是a/bc还是ac/b啊,/(是分之)在线等,什么情况是a/bc什么情况是ac/b 2021-01-08 …