早教吧作业答案频道 -->其他-->
定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式exf(x)>ex+3(其中e为自然对数的定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式exf(x)>ex+3(其
题目详情
定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式exf(x)>ex+3(其中e为自然对数的
定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式exf(x)>ex+3(其中e为自然对数的底数)的解集为( )
A.(0,+∞)
B.(-∞,0)∪(3,+∞)
C.(-∞,0)∪(0,+∞)
D.(3,+∞)
定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式exf(x)>ex+3(其中e为自然对数的底数)的解集为( )
A.(0,+∞)
B.(-∞,0)∪(3,+∞)
C.(-∞,0)∪(0,+∞)
D.(3,+∞)
▼优质解答
答案和解析
设g(x)=exf(x)-ex,(x∈R),
则g′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1],
∵f(x)+f′(x)>1,
∴f(x)+f′(x)-1>0,
∴g′(x)>0,
∴y=g(x)在定义域上单调递增,
∵exf(x)>ex+3,
∴g(x)>3,
又∵g(0)═e0f(0)-e0=4-1=3,
∴g(x)>g(0),
∴x>0
故选:A.
则g′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1],
∵f(x)+f′(x)>1,
∴f(x)+f′(x)-1>0,
∴g′(x)>0,
∴y=g(x)在定义域上单调递增,
∵exf(x)>ex+3,
∴g(x)>3,
又∵g(0)═e0f(0)-e0=4-1=3,
∴g(x)>g(0),
∴x>0
故选:A.
看了 定义在R上的函数f(x)满足...的网友还看了以下:
求证:函数y=f(a+x)与函数y=f(a-x)关于x=0对称,其中x∈R求证:函数y=f(a+x 2020-05-16 …
已知函数f(x)=ax^2+bx+c(a>0,b,c属于R)若函数f(x)的最小值是f(-1)=0 2020-06-06 …
(高中数学)已知集合M={f(x)|f2(x)-f2(y)=f(x+y)•f(x-y)},x,y∈ 2020-06-12 …
已知f(x)是定义在R上的奇函数,且f(x+2)=-f(x),当0≤x≤1时,f(x)=x.(1) 2020-07-15 …
设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①若f(x)+g(x)、f(x)+ 2020-07-21 …
设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①若f(x)+g(x)、f(x)+ 2020-07-22 …
函数f(X)对任意a,b都有f(a+b)=f(a)+f(b)-1,且当X〉0时有f(x)〉1.求证 2020-08-01 …
已知函数f(x)=x-1-lnx,g(x)=ex-e-x-ax(e为自然对数的底数).(1)若g( 2020-08-02 …
已知函数f(x)=-13x3+x2+b,g(x)=x+ax2+1,其中x∈R(I)当b=23时,若 2020-08-02 …
已知函数f(x)对一切实数x、y满足f(0)≠0,f(x+y)=f(x)*f(y),且当x<0时f( 2020-12-27 …