早教吧作业答案频道 -->数学-->
showthatFibonaccinumberssatisfytherecurrencerelationfn=5f(n-4)+3f(n-5)forn=5,6,7...,togetherwiththeinitialconditionsf0=0,f1=1,f2=1,f3=2,f4=3.usethisrecurrencerelationtoshowthatf5nisdivisibleby5,forn=1,2,3...注:fibonacci
题目详情
show that Fibonacci numbers satisfy the recurrence relation fn=5f(n-4)+3f(n-5) for n=5,6,7...,together with the initial conditions f0=0,f1=1,f2=1,f3=2,f4=3.use this recurrence relation to show that f5n is divisible by 5,for n=1,2,3...
注:fibonacci number满足fn=f(n-1)+f(n-2)
注:fibonacci number满足fn=f(n-1)+f(n-2)
▼优质解答
答案和解析
fn=f(n-1)+f(n-2)=f(n-2)+2f(n-3)+f(n-4)
=f(n-3)+f(n-4)+2f(n-3)+f(n-4)=3f(n-3)+2f(n-4)=3(f(n-4)+f(n-5))+2f(n-4)=5f(n-4)+3f(n-5)
归纳法证明,当n=1时,f5=5,5整除f5,命题成立,假设命题对任意n成立,下面考虑n+1时的情况,利用上面等式有
f5(n+1)=f(5n+5)=5f(5n+1)+3f(5n)
由归纳法假设上式右边第2项被5整除,第1项含有因子5,故f5(n+1)也能被5整除,完成归纳法证明,故对任意n,fn能被5整除.
=f(n-3)+f(n-4)+2f(n-3)+f(n-4)=3f(n-3)+2f(n-4)=3(f(n-4)+f(n-5))+2f(n-4)=5f(n-4)+3f(n-5)
归纳法证明,当n=1时,f5=5,5整除f5,命题成立,假设命题对任意n成立,下面考虑n+1时的情况,利用上面等式有
f5(n+1)=f(5n+5)=5f(5n+1)+3f(5n)
由归纳法假设上式右边第2项被5整除,第1项含有因子5,故f5(n+1)也能被5整除,完成归纳法证明,故对任意n,fn能被5整除.
看了 showthatFibona...的网友还看了以下:
直接写出得数:0.5+0.4=0.90.9;1.4+2.7=4.14.1;8.2+3.7=11.9 2020-04-07 …
5.已知x=√5-√2,求x^6-(2√2)x^5-3x^4-x^3+(2√5)x^2-4x+√5 2020-04-26 …
观察下列各式:根号(2-2/5)=根号(8/5)=根号(4*2/5)=2又根号(2/5),即根号( 2020-04-27 …
过点(2,1)并与两坐标轴都相切的圆的方程是( )A. (x-1)2+(y-1)2=1B. (x 2020-05-14 …
123312313213232111131+1+1+5+5+8+8+6+2+2+2+2+2+2+2 2020-05-17 …
表达式Int(2.5)、ABS(2.5)、Int(-2.5)、ABS(-2.5)的运算结果分别是( 2020-06-09 …
已知2=2,2+5=7=1/2*(2+5)*2,2+5+8=15=1/2*(2+8)*3,2+5+ 2020-07-19 …
(1)-22-(-1)3(2)4-5*(-1/2)3(3)(-10)2/5×(-2/5)(4)(- 2020-07-22 …
showthatFibonaccinumberssatisfytherecurrencerelat 2020-07-31 …
直接写出得数.0.5×4÷0.5×4=4.2-4.2×0.5=1.2÷4×1.2÷4=6.3+6.3 2020-11-19 …