早教吧作业答案频道 -->数学-->
showthatFibonaccinumberssatisfytherecurrencerelationfn=5f(n-4)+3f(n-5)forn=5,6,7...,togetherwiththeinitialconditionsf0=0,f1=1,f2=1,f3=2,f4=3.usethisrecurrencerelationtoshowthatf5nisdivisibleby5,forn=1,2,3...注:fibonacci
题目详情
show that Fibonacci numbers satisfy the recurrence relation fn=5f(n-4)+3f(n-5) for n=5,6,7...,together with the initial conditions f0=0,f1=1,f2=1,f3=2,f4=3.use this recurrence relation to show that f5n is divisible by 5,for n=1,2,3...
注:fibonacci number满足fn=f(n-1)+f(n-2)
注:fibonacci number满足fn=f(n-1)+f(n-2)
▼优质解答
答案和解析
fn=f(n-1)+f(n-2)=f(n-2)+2f(n-3)+f(n-4)
=f(n-3)+f(n-4)+2f(n-3)+f(n-4)=3f(n-3)+2f(n-4)=3(f(n-4)+f(n-5))+2f(n-4)=5f(n-4)+3f(n-5)
归纳法证明,当n=1时,f5=5,5整除f5,命题成立,假设命题对任意n成立,下面考虑n+1时的情况,利用上面等式有
f5(n+1)=f(5n+5)=5f(5n+1)+3f(5n)
由归纳法假设上式右边第2项被5整除,第1项含有因子5,故f5(n+1)也能被5整除,完成归纳法证明,故对任意n,fn能被5整除.
=f(n-3)+f(n-4)+2f(n-3)+f(n-4)=3f(n-3)+2f(n-4)=3(f(n-4)+f(n-5))+2f(n-4)=5f(n-4)+3f(n-5)
归纳法证明,当n=1时,f5=5,5整除f5,命题成立,假设命题对任意n成立,下面考虑n+1时的情况,利用上面等式有
f5(n+1)=f(5n+5)=5f(5n+1)+3f(5n)
由归纳法假设上式右边第2项被5整除,第1项含有因子5,故f5(n+1)也能被5整除,完成归纳法证明,故对任意n,fn能被5整除.
看了 showthatFibona...的网友还看了以下:
求:函数f(x)是什么意思?“非常白话类型的”f()有何作用?函数f(x)是什么意思?解题时具体该 2020-05-15 …
已知函数f(x)满足f(3)=1/3,3f(x)f(y)=f(x+y)+f(x-y),求f(181 2020-05-21 …
f表示一种新运算,f(1)=0f(2)=1f(3)=2f(4)=3f(½)=2f(1/3)=3f( 2020-06-03 …
已知函数f(x)=(x^1/3-x^-1/3)/5,g(x)=(x^1/3+x1/3)/5.分别计 2020-07-21 …
已知函数f(x)=(x^1/3-x^(-1/3))/5,g(x)=(x^1/3+x^(-1/3)) 2020-07-27 …
showthatFibonaccinumberssatisfytherecurrencerelat 2020-07-31 …
,已知5f(x)+3f(1/3)=2x+1.求f(x) 2020-08-03 …
3f(x)+5f(1/x)=2x+1,则f(x)=? 2020-08-03 …
已知3f(x)+5f(1/x)=2x+1=2x+1,求f(X) 2020-08-03 …
急!高一“函数的概念”中的几道题目.1.已知函数f(x+1)=X^2-4x+1,求f(x)2.[变式 2020-12-08 …