早教吧作业答案频道 -->其他-->
(2000•湖州)如图,已知AB是⊙O的直径,PC切⊙O于C,AD⊥PD,CM⊥AB,垂足分别为D,M.(1)求证:CB平分∠PCM;(2)若∠CBA=60°,求证:△ADM为等边三角形;(3)若PO=5,PC=a,⊙O的半径为r
题目详情

(1)求证:CB平分∠PCM;
(2)若∠CBA=60°,求证:△ADM为等边三角形;
(3)若PO=5,PC=a,⊙O的半径为r,且a,r是关于x的方程x2-(2m+1)x+4m=0的两根,求m的值.
▼优质解答
答案和解析
(1)证明:延长CM与圆相交于E,连接OC,OE;
∵CM⊥AB,
∴
=
.
∴∠COP=∠EOP.
∴∠BCP=
∠COP,∠MCB=
∠EOP.
∴∠BCP=∠MCB,CB平分∠PCM.
(2)证明:∵∠CBA=60°,
∴∠1=∠ACD=30°.
∵∠COB是△AOC的外角,
∴∠COB=60°.
又∵AD⊥PC,OC⊥PC,
∴AD∥OC,∠DAM=∠COB=60°.
∵△BOC是等边三角形,CM⊥OB,
∴∠BCM=30°.
∵CB平分∠PCM,
∴∠PCB=30°.
∴∠1=∠PCB=30°.
又∵∠DAM=60°,
∴∠DAC=∠1=30°.
∴AC是∠DAM的平分线.
∵∠ADC=∠CMA=90°,
∴CD=CM,△ADC≌△AMC,AD=AM.
∴∠ADM=∠AMD.
又∵∠DAM=60°,
∴∠DAM=∠ADM=∠AMD=60°.
即△ADM为等边三角形;
(3)∵PO=5,PC=a,⊙O的半径为r,
∴在Rt△OCP中,OC2+PC2=OP2
即r2+a2=52①
∵a,r是关于x的方程x2-(2m+1)x+4m=0的两根
∴a+r=2m+1,ar=4m ②
∴(a+r)2=a2+r2+2ar ③
把①②代入③得(2m+1)2=25+8m,解得m=3或m=-2(舍去)
故m=3.

∵CM⊥AB,
∴
![]() |
CB |
![]() |
BE |
∴∠COP=∠EOP.
∴∠BCP=
1 |
2 |
1 |
2 |
∴∠BCP=∠MCB,CB平分∠PCM.
(2)证明:∵∠CBA=60°,
∴∠1=∠ACD=30°.
∵∠COB是△AOC的外角,
∴∠COB=60°.
又∵AD⊥PC,OC⊥PC,
∴AD∥OC,∠DAM=∠COB=60°.
∵△BOC是等边三角形,CM⊥OB,
∴∠BCM=30°.
∵CB平分∠PCM,
∴∠PCB=30°.
∴∠1=∠PCB=30°.
又∵∠DAM=60°,
∴∠DAC=∠1=30°.
∴AC是∠DAM的平分线.
∵∠ADC=∠CMA=90°,
∴CD=CM,△ADC≌△AMC,AD=AM.
∴∠ADM=∠AMD.
又∵∠DAM=60°,
∴∠DAM=∠ADM=∠AMD=60°.
即△ADM为等边三角形;
(3)∵PO=5,PC=a,⊙O的半径为r,
∴在Rt△OCP中,OC2+PC2=OP2
即r2+a2=52①
∵a,r是关于x的方程x2-(2m+1)x+4m=0的两根
∴a+r=2m+1,ar=4m ②
∴(a+r)2=a2+r2+2ar ③
把①②代入③得(2m+1)2=25+8m,解得m=3或m=-2(舍去)
故m=3.
看了 (2000•湖州)如图,已知...的网友还看了以下:
圆0和o'都经过点A,B.点P在BA延长线上,过P作圆O的割线PCD交圆0于CD两点作圆o'的切线P 2020-03-31 …
椭圆方程问题椭圆c两焦点为—1,0和1,0且过点a(1,3/2),o为原点.求椭圆方程.过点o作两 2020-05-15 …
我无意用尺规画出了一个正四十九边形,(证明成立或不成立)画圆O在圆O上任取一点P40以P40为圆心 2020-05-16 …
如图,△ABC中,∠ACB=90°,D是边AB上的一点,且∠A=2∠DCB.E是BC上的一点,以E 2020-06-12 …
在三角形ABC中,AD垂直BC于D,EF分别是AB AC的中点,且EF=AD,以EF为直径做○o, 2020-06-27 …
一刀证明题!△ABC中,角C=90°,AC=12,BC=8,以AC为直径作圆O,以B为圆心,4为半 2020-07-14 …
你证不出来的题!``````1.cosA+cosB+cosC=1+r/R如何证明A,B,C为任意三 2020-07-31 …
已知BC为半圆的直径,O为圆心,D是弧AC的中点,四边形ABCD对角线AC,BD交于E.(1)求已知 2020-11-03 …
天文学家哈雷曾经在如三82年跟踪过一颗彗星,他算出这颗彗星轨道o半长轴约等于地球公转半径o如8倍,并 2020-11-23 …
如图在Rt△ABC中∠c=90º以BC为直径作⊙o交AB于点D取AC的中点E连接DEOE如 2020-11-26 …