早教吧作业答案频道 -->其他-->
(2000•湖州)如图,已知AB是⊙O的直径,PC切⊙O于C,AD⊥PD,CM⊥AB,垂足分别为D,M.(1)求证:CB平分∠PCM;(2)若∠CBA=60°,求证:△ADM为等边三角形;(3)若PO=5,PC=a,⊙O的半径为r
题目详情

(1)求证:CB平分∠PCM;
(2)若∠CBA=60°,求证:△ADM为等边三角形;
(3)若PO=5,PC=a,⊙O的半径为r,且a,r是关于x的方程x2-(2m+1)x+4m=0的两根,求m的值.
▼优质解答
答案和解析
(1)证明:延长CM与圆相交于E,连接OC,OE;
∵CM⊥AB,
∴
=
.
∴∠COP=∠EOP.
∴∠BCP=
∠COP,∠MCB=
∠EOP.
∴∠BCP=∠MCB,CB平分∠PCM.
(2)证明:∵∠CBA=60°,
∴∠1=∠ACD=30°.
∵∠COB是△AOC的外角,
∴∠COB=60°.
又∵AD⊥PC,OC⊥PC,
∴AD∥OC,∠DAM=∠COB=60°.
∵△BOC是等边三角形,CM⊥OB,
∴∠BCM=30°.
∵CB平分∠PCM,
∴∠PCB=30°.
∴∠1=∠PCB=30°.
又∵∠DAM=60°,
∴∠DAC=∠1=30°.
∴AC是∠DAM的平分线.
∵∠ADC=∠CMA=90°,
∴CD=CM,△ADC≌△AMC,AD=AM.
∴∠ADM=∠AMD.
又∵∠DAM=60°,
∴∠DAM=∠ADM=∠AMD=60°.
即△ADM为等边三角形;
(3)∵PO=5,PC=a,⊙O的半径为r,
∴在Rt△OCP中,OC2+PC2=OP2
即r2+a2=52①
∵a,r是关于x的方程x2-(2m+1)x+4m=0的两根
∴a+r=2m+1,ar=4m ②
∴(a+r)2=a2+r2+2ar ③
把①②代入③得(2m+1)2=25+8m,解得m=3或m=-2(舍去)
故m=3.

∵CM⊥AB,
∴
![]() |
CB |
![]() |
BE |
∴∠COP=∠EOP.
∴∠BCP=
1 |
2 |
1 |
2 |
∴∠BCP=∠MCB,CB平分∠PCM.
(2)证明:∵∠CBA=60°,
∴∠1=∠ACD=30°.
∵∠COB是△AOC的外角,
∴∠COB=60°.
又∵AD⊥PC,OC⊥PC,
∴AD∥OC,∠DAM=∠COB=60°.
∵△BOC是等边三角形,CM⊥OB,
∴∠BCM=30°.
∵CB平分∠PCM,
∴∠PCB=30°.
∴∠1=∠PCB=30°.
又∵∠DAM=60°,
∴∠DAC=∠1=30°.
∴AC是∠DAM的平分线.
∵∠ADC=∠CMA=90°,
∴CD=CM,△ADC≌△AMC,AD=AM.
∴∠ADM=∠AMD.
又∵∠DAM=60°,
∴∠DAM=∠ADM=∠AMD=60°.
即△ADM为等边三角形;
(3)∵PO=5,PC=a,⊙O的半径为r,
∴在Rt△OCP中,OC2+PC2=OP2
即r2+a2=52①
∵a,r是关于x的方程x2-(2m+1)x+4m=0的两根
∴a+r=2m+1,ar=4m ②
∴(a+r)2=a2+r2+2ar ③
把①②代入③得(2m+1)2=25+8m,解得m=3或m=-2(舍去)
故m=3.
看了 (2000•湖州)如图,已知...的网友还看了以下:
1.a≠0,b≠0,则a/|a|+b/|b|的不同取值的个数为()A.3B.2C.1D.02.若|x 2020-03-31 …
数集A满足条件若a∈A则有(1+a)/(1-a)∈A(a≠1)数集A满足条件若a∈A则有(1+a) 2020-04-05 …
用分析法证明,a大于0,则根号下a平方+a平方分之1-根号2,大于等于,...用分析法证明,a大于 2020-04-05 …
基本不等式超费解130已知a>b>0,求a2+1/(a*b)+1/[a*(a-b)]的最小值.a2 2020-05-13 …
设集合A={1,a,b},B={a,a^2,ab}且A=B,求实数A,B的值因为集合需要满足互异性 2020-05-15 …
关于元素的相对原子质量计算硼有两种天然同位素(10/5)B、(11/5)B,硼元素的近似相对原子质 2020-05-16 …
A和B为两种元素,已知A位于短周期,A2-与B+的电子数之差为8,则下列说法正确的是(A)A和B的 2020-05-24 …
定积分证明题设f(x)在[-a,a]上连续,具有二阶连续导数,且f(0)=0证明:在[-a,a]上 2020-06-12 …
设A={x|x小于等于根号10},a=3.14,则下列结论中正确的是A.a属于AB.a含于A(a是 2020-06-12 …
设A={x|x小于等于根号10},a=3.14,则下列结论中正确的是A.a属于AB.a含于A(a是 2020-06-12 …