早教吧作业答案频道 -->数学-->
函数旋转后的体积问题函数围绕x轴旋转的体积是π∫f(x)^2dx但是要是围绕y=c呢同理围绕x=c旋转的体积公式是什么
题目详情
函数旋转后的体积问题
函数围绕x轴旋转的体积是π∫f(x)^2dx但是要是围绕y=c呢 同理围绕x=c旋转的体积公式是什么
函数围绕x轴旋转的体积是π∫f(x)^2dx但是要是围绕y=c呢 同理围绕x=c旋转的体积公式是什么
▼优质解答
答案和解析
用 “微元法”来
(1)(用扁圆台法)曲线 y = f(x) 在 [a,b]围绕直线 y = c 旋转,作图(此处略,由你自己做),在任意 x∈[a,b]处的旋转体的体积微元
dV(x) = π{[f(x)-c]^2}dx,
于是,曲线 y = f(x) 在 [a,b] 围绕直线 y = c 旋转的旋转体的体积为
V = ∫[a,b]dV(x) = π∫[a,b]{[f(x)-c]^2}dx.
(2)(用薄壳法)曲线 y = f(x) 与直线 x = a,x = b 及 y = 0 所围成的区域绕直线 x = c (此处仅处理c 不在 [a,b]内的情形,其它情形就复杂了)旋转,作图(此处略,由你自己做),在任意 x∈[a,b]处的旋转体的体积微元
dV(x) = 2π|(x-c)f(x)|dx,
于是,所求旋转体的体积为
V = ∫[a,b]dV(x) = 2π∫[a,b]|(x-c)f(x)|dx.
(1)(用扁圆台法)曲线 y = f(x) 在 [a,b]围绕直线 y = c 旋转,作图(此处略,由你自己做),在任意 x∈[a,b]处的旋转体的体积微元
dV(x) = π{[f(x)-c]^2}dx,
于是,曲线 y = f(x) 在 [a,b] 围绕直线 y = c 旋转的旋转体的体积为
V = ∫[a,b]dV(x) = π∫[a,b]{[f(x)-c]^2}dx.
(2)(用薄壳法)曲线 y = f(x) 与直线 x = a,x = b 及 y = 0 所围成的区域绕直线 x = c (此处仅处理c 不在 [a,b]内的情形,其它情形就复杂了)旋转,作图(此处略,由你自己做),在任意 x∈[a,b]处的旋转体的体积微元
dV(x) = 2π|(x-c)f(x)|dx,
于是,所求旋转体的体积为
V = ∫[a,b]dV(x) = 2π∫[a,b]|(x-c)f(x)|dx.
看了 函数旋转后的体积问题函数围绕...的网友还看了以下:
若点P(x0,y0)在函数y=f(x)的图像上,y=f-1(x)为函数y=f(x)的反函数,则下列各 2020-03-30 …
(1)幂函数y=x^-2/3的定义域?(2)若函数y=f(x)的反函数图象过点(1,5),则函数y 2020-05-13 …
下列命题中正确的是()A.当α=0时函数y=xα的图象是一条直线B.幂函数的图象都经过(0,0)和 2020-05-13 …
下列说法错误的是[]A.圆的周长c=2πR,圆周率π和圆的半径R的关系是反比例关系B.式子xy=- 2020-05-14 …
下列叙述错误的是()A.圆的周长C=2πR,圆周率π和圆的半径的关系是反比例关系B.式子xy=-1 2020-05-14 …
二次函数y=ax²+c(a≠0)的图象经过A(1,-1),B(2,5):(1)求函数y=ax²+c 2020-05-16 …
公务接待结束后,在报销接待费时,必须具备以下凭证:A、财务票据B、派出单位的公函C、接待清单D、公 2020-06-07 …
为何常值函数不属于一次函数常值函数y=c(c为常数)为何不是常值函数呢?如果一次函数y=kx+b中 2020-06-08 …
化简逻辑函数求大神1,化简逻辑函数Y=Aˊ(CDˊ+CˊD)+BCˊD+ACˊD+AˊCDˊY=A 2020-06-12 …
函数y=ax3+bx2+cx+d(a≠0)的导函数为y=3ax2+2bx+c,不妨把方程y=3ax 2020-06-23 …