在三棱锥P-ABC中,平面PAC⊥平面ABC,AB⊥BC,若△PAC为正三角形且边长为2,则三棱锥P-ABC外接球的体积为()A.πB.32327πC.34πD.3227π
在三棱锥P-ABC中,平面PAC⊥平面ABC,AB⊥BC,若△PAC为正三角形且边长为2,则三棱锥P-ABC外接球的体积为( )
A. π
B.
π32 3 27
C.
π3 4
D.
π32 27

3 |
∵AB⊥BC,
∴AC为△ABC外接圆的直径,
∴球心O在PO′上,
设球的半径为R,则R2=12+(
3 |
∴R=
2 | ||
|
∴三棱锥P-ABC外接球的体积为
4 |
3 |
4 |
3 |
2 | ||
|
32
| ||
27 |
故选:B.
如果关于x的方程3x-5+a=bx+1有唯一的一个解,则a与b必须满足的条件为()A.a≠2bB. 2020-04-27 …
能说明△ABC∽△A′B′C′的条件是()A.ABA′B′=ACA′C≠BCB′C′B.ABAC= 2020-05-13 …
24 (a+b)/(c+d)=(√a^2+b^2)/√ (c^2+d^2)成立证明:(1)a/b= 2020-05-14 …
定义集合A*B={x|x∈A且x不属于B},若A={1,3,5,7},B={2,3,5},则: ( 2020-05-15 …
区间【m,n】的长度为n-m(n>m),设A=[0,t](t>0),B=[a,b](b>a),从A 2020-05-16 …
已知△ABC,内角A,B,C所对的边分别为a,b,c,且满足下列三个条件1.a^2+b^2=c^2 2020-05-23 …
充分必要与当且仅当有差别吗?这个问题困扰我多年了,今天才提出来.A是B的充分必要条件表示:A->B 2020-06-16 …
设a,b,c∈R,证明a^2acc^23b(abc)≥0,并指出等号何时成立问题补充:证明:不妨设 2020-06-23 …
35.a+b+c=26;(A)证明:(1)a、b、c成等比数列,且a,b+4,c成等差数列=/=> 2020-07-30 …
设A,B为任意两个事件且A⊂B,P(B)>0,则下列选项必然成立的是()A.P(A)<P(A|B)B 2021-01-01 …