早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知动圆C与圆C1:(x-2)2+y2=1外切.又与直线l:x=-1相切(1)求动圆C的圆心的轨迹方程E;(2)若动点M为直线l上任一点,过点P(1,0)的直线与曲线E相交干A,B两点.求证:kMA+kMB=2kMP.

题目详情
已知动圆C与圆C1:(x-2)2+y2=1外切.又与直线l:x=-1相切
(1)求动圆C的圆心的轨迹方程E;
(2)若动点M为直线l上任一点,过点P(1,0)的直线与曲线E相交干A,B两点.求证:kMA+kMB=2kMP
▼优质解答
答案和解析
(1)令C点坐标为(x,y),C1(2,0),动圆得半径为r,
则根据两圆相外切及直线与圆相切得性质可得,CC1=1+r,d=r,
C在直线的右侧,故C到定直线的距离是x+1,
所以CC1-d=1,即
(x-2)2+y2
-(x+1)=1,
化简得:y2=8x.
(2)证明:由题意,设直线AB的方程为x=my+1,
代入抛物线方程,消去x可得y2-8my-8=0,
设A(x1,y1),B(x2,y2),M(-1,t),
则y1+y2=8m,y1y2=-8,x1+x2=8m2+2,x1x2=1,
∴kMA+kMB=
y1-t
x1+t
+
y2-t
x2+1
=
1
8
y1y2(y1+y2)+y1+y2-t(x1+x2)-2t
x1x2+x1+x2+1
=-t,
2kMP=2•
t
-1-1
=-t,
∴kMA+kMB=2kMP