早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F,过点D作∠CDE=∠DFE,DE交AB的延长线于点E,过点A作⊙O的切线交ED的延长线于点G.(1)求证:GE是⊙O的切线;(2)若tanC=13,

题目详情
如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F,过点D作∠CDE=∠DFE,DE交AB的延长线于点E,过点A作⊙O的切线交ED的延长线于点G.
作业帮
(1)求证:GE是⊙O的切线;
(2)若tanC=
1
3
,BE=4,求AG的长.
▼优质解答
答案和解析
作业帮(1)证明:连接OD,如图,
∵∠1=∠2,
而∠2=∠3,
∴∠3=∠1,
∵OC⊥AB,
∴∠3+∠C=90°,
∴∠1+∠C=90°,
而OC=OD,
∴∠C=∠4,
∴∠1+∠4=90°,即∠ODE=90°,
∴OD⊥DE,
∴GE是⊙O的切线;

(2) 设OF=x,则OC=3x,
∴BF=2x,
∵∠1=∠2,
∴ED=EF=2x+4,
在Rt△ODE中,
∵OD2+DE2=OE2
∴(3x)2+(2x+4)2=(4+3x)2,解得x=2,
∴OD=6,DE=8,OE=10
又∵△AGE∽△DOE,
AE=16,
可得AG=12.