早教吧作业答案频道 -->其他-->
如图,在半径为3厘米的⊙O中,A,B,C三点在圆上,∠BAC=75°,点P从点B开始以π5厘米/秒的速度在劣弧BC上运动,且运动时间为t(秒),∠AOB=90°、∠BOP=n°.(1)∠BOC=度,求n与t之间的
题目详情
如图,在半径为3厘米的⊙O中,A,B,C三点在圆上,∠BAC=75°,点P从点B开始以
厘米/秒的
速度在劣弧BC上运动,且运动时间为t(秒),∠AOB=90°、∠BOP=n°.
(1)∠BOC=______ 度,求n与t之间的函数关系式,并求t的取值范围;
(2)试探究当点P运动多少秒时:
①四边形PBAC为等腰梯形,并说明其理由;
②以P,B,A,C四点中的三点为顶点的三角形是等腰三角形.
| π |
| 5 |
速度在劣弧BC上运动,且运动时间为t(秒),∠AOB=90°、∠BOP=n°.(1)∠BOC=______ 度,求n与t之间的函数关系式,并求t的取值范围;
(2)试探究当点P运动多少秒时:
①四边形PBAC为等腰梯形,并说明其理由;
②以P,B,A,C四点中的三点为顶点的三角形是等腰三角形.
▼优质解答
答案和解析
(1)∵∠AOB=90°,∴∠BAO=45°,
∵∠BAC=75°,∴∠CAO=30°,
∵AO=CO,
∴∠CAO=∠OCA=30°,
∴∠AOC=180°-30°-30°=120°,
∴∠BOC=360°-90°-120°=150°,
∵∠BOP=n°,则
t=
,整理得出:n=12t,
当n=150°时,150°=12t,t=12.5,故0≤t≤12.5.
(2)①∠BOP=n°,n=12t.
如图1,当BP∥AC时,t=5秒,四边形PBAC为等腰梯形.
理由:∵∠PBA=180°-75°=105°,
∵∠OBA=45°∴∠OBP=60°,OB=OP,
∴∠BOP=60°,则60=12t,
解得:t=5(秒),
又∵∠AOP=150°,∠ACP=75°,∴AB 与PC不平行.
又∵∠POC=150°-60°=90°=∠AOB,
∴AB=PC,∴四边形PBAC为等腰梯形.
如图2,当PC∥AB时,n=120=12t,解得:t=10(秒)
理由:∵∠CPB=180°-75°=105°,
∵∠OBA=45°,∴∠OBP=30°,OB=OP,
∴∠BOP=120°,则120=12t,
解得:t=10(秒),
又∵∠ACP=180°-75°=105°,∠BPC=105°,∴PB与AC不平行.
又∵∠POB=120°=∠AOC,
∴PB=AC,∴四边形PBAC为等腰梯形.
②在△ABP中,以AB为腰时(如图3),
∵∠BPA=∠BAP=45°,
∴∠BOP=45°+45°=90°,
故n=90=12t,解得:t=7.5(秒),
以AB为底边时(如图4),
∵∠BPA=
∠BOA=45°,∴∠BAP=67.5°,∴∠BOP=2×67.5°,
故135=12t,
解得:t=11.25(秒).
如图5.在△APC中,∠APC=60°,△APC是等边三角形,
∴∠BAP=15°,∠BOP=30°,
故30=12t,解得:t=2.5(秒).
如图6,在△BPC中,∠BPC=105°,只有BP=PC这种情况,
此时P是弧BC的中点,或说AP是∠BAC的平分线,
∠BOP=75°,
故n=75=12t,
解得:t=6.25(秒).
综合上述:当点P运动时间为5,10秒,四边形ABPC为等腰梯形;
当点P运动时间为7.5,11.25秒,三角形ABP为等腰三角形;
当点P运动时间为2.5秒,三角形APC为正三角形;
当点P运动时间为6.25秒,三角形BPC为等腰三角形.
∵∠BAC=75°,∴∠CAO=30°,
∵AO=CO,
∴∠CAO=∠OCA=30°,
∴∠AOC=180°-30°-30°=120°,
∴∠BOC=360°-90°-120°=150°,
∵∠BOP=n°,则
| π |
| 5 |
| 3πn |
| 180 |
当n=150°时,150°=12t,t=12.5,故0≤t≤12.5.
(2)①∠BOP=n°,n=12t.
如图1,当BP∥AC时,t=5秒,四边形PBAC为等腰梯形.
理由:∵∠PBA=180°-75°=105°,
∵∠OBA=45°∴∠OBP=60°,OB=OP,
∴∠BOP=60°,则60=12t,
解得:t=5(秒),
又∵∠AOP=150°,∠ACP=75°,∴AB 与PC不平行.
又∵∠POC=150°-60°=90°=∠AOB,
∴AB=PC,∴四边形PBAC为等腰梯形.
如图2,当PC∥AB时,n=120=12t,解得:t=10(秒)
理由:∵∠CPB=180°-75°=105°,
∵∠OBA=45°,∴∠OBP=30°,OB=OP,
∴∠BOP=120°,则120=12t,
解得:t=10(秒),

又∵∠ACP=180°-75°=105°,∠BPC=105°,∴PB与AC不平行.
又∵∠POB=120°=∠AOC,
∴PB=AC,∴四边形PBAC为等腰梯形.
②在△ABP中,以AB为腰时(如图3),
∵∠BPA=∠BAP=45°,
∴∠BOP=45°+45°=90°,
故n=90=12t,解得:t=7.5(秒),
以AB为底边时(如图4),
∵∠BPA=
| 1 |
| 2 |
故135=12t,
解得:t=11.25(秒).
如图5.在△APC中,∠APC=60°,△APC是等边三角形,
∴∠BAP=15°,∠BOP=30°,
故30=12t,解得:t=2.5(秒).
如图6,在△BPC中,∠BPC=105°,只有BP=PC这种情况,
此时P是弧BC的中点,或说AP是∠BAC的平分线,
∠BOP=75°,
故n=75=12t,
解得:t=6.25(秒).
综合上述:当点P运动时间为5,10秒,四边形ABPC为等腰梯形;
当点P运动时间为7.5,11.25秒,三角形ABP为等腰三角形;
当点P运动时间为2.5秒,三角形APC为正三角形;
当点P运动时间为6.25秒,三角形BPC为等腰三角形.
看了 如图,在半径为3厘米的⊙O中...的网友还看了以下:
在平行四边形ABCD中,点E,F分别是线段AD,BC上的两动点,点E从点A向D运动在平行四边形AB 2020-05-13 …
ab垂直bc,ab=10cm,点m以1厘米每秒的速度从点a开始延ab向点b运动,点n同时以2厘米秒 2020-05-14 …
如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B 2020-05-16 …
如图,正方形ABCD的边长为10cm,点P从点A出发沿AB向点B运动,点Q从点D出发沿DA向点A运 2020-05-17 …
已知线段AB=acm,P、Q是线段AB上的两个动点,点P从点A出发沿AB以每秒80cm的速度向B运 2020-06-02 …
等腰梯形ABCDAB‖DCAB=8cmCD=2cmAD=6cm点P从A出发,以,以2cm/s的速度 2020-06-02 …
在梯形ABCD中,AD‖BC,AB=DC=3厘米,BC=4厘米,∠B=60度,点P从A点开始沿点B 2020-06-03 …
如图,在梯形ABCD中,AD‖BC,AD=6cm,BC=16cm,E是BC的中点,点P以每秒1cm 2020-06-22 …
如图,在平面直角坐标系中,O(0,0),A(0,6),B(8,6),C(10,0),点Q从点A出发 2020-07-26 …
在平面直角坐标系有点A(0,4)B(9,4)C(12,0),已知点P从点A出发沿AB路线向点B运动, 2020-12-15 …