早教吧作业答案频道 -->其他-->
如图,在半径为3厘米的⊙O中,A,B,C三点在圆上,∠BAC=75°,点P从点B开始以π5厘米/秒的速度在劣弧BC上运动,且运动时间为t(秒),∠AOB=90°、∠BOP=n°.(1)∠BOC=度,求n与t之间的
题目详情
如图,在半径为3厘米的⊙O中,A,B,C三点在圆上,∠BAC=75°,点P从点B开始以
厘米/秒的
速度在劣弧BC上运动,且运动时间为t(秒),∠AOB=90°、∠BOP=n°.
(1)∠BOC=______ 度,求n与t之间的函数关系式,并求t的取值范围;
(2)试探究当点P运动多少秒时:
①四边形PBAC为等腰梯形,并说明其理由;
②以P,B,A,C四点中的三点为顶点的三角形是等腰三角形.
π |
5 |

(1)∠BOC=______ 度,求n与t之间的函数关系式,并求t的取值范围;
(2)试探究当点P运动多少秒时:
①四边形PBAC为等腰梯形,并说明其理由;
②以P,B,A,C四点中的三点为顶点的三角形是等腰三角形.
▼优质解答
答案和解析
(1)∵∠AOB=90°,∴∠BAO=45°,
∵∠BAC=75°,∴∠CAO=30°,
∵AO=CO,
∴∠CAO=∠OCA=30°,
∴∠AOC=180°-30°-30°=120°,
∴∠BOC=360°-90°-120°=150°,
∵∠BOP=n°,则
t=
,整理得出:n=12t,
当n=150°时,150°=12t,t=12.5,故0≤t≤12.5.
(2)①∠BOP=n°,n=12t.
如图1,当BP∥AC时,t=5秒,四边形PBAC为等腰梯形.
理由:∵∠PBA=180°-75°=105°,
∵∠OBA=45°∴∠OBP=60°,OB=OP,
∴∠BOP=60°,则60=12t,
解得:t=5(秒),
又∵∠AOP=150°,∠ACP=75°,∴AB 与PC不平行.
又∵∠POC=150°-60°=90°=∠AOB,
∴AB=PC,∴四边形PBAC为等腰梯形.
如图2,当PC∥AB时,n=120=12t,解得:t=10(秒)
理由:∵∠CPB=180°-75°=105°,
∵∠OBA=45°,∴∠OBP=30°,OB=OP,
∴∠BOP=120°,则120=12t,
解得:t=10(秒),
又∵∠ACP=180°-75°=105°,∠BPC=105°,∴PB与AC不平行.
又∵∠POB=120°=∠AOC,
∴PB=AC,∴四边形PBAC为等腰梯形.
②在△ABP中,以AB为腰时(如图3),
∵∠BPA=∠BAP=45°,
∴∠BOP=45°+45°=90°,
故n=90=12t,解得:t=7.5(秒),
以AB为底边时(如图4),
∵∠BPA=
∠BOA=45°,∴∠BAP=67.5°,∴∠BOP=2×67.5°,
故135=12t,
解得:t=11.25(秒).
如图5.在△APC中,∠APC=60°,△APC是等边三角形,
∴∠BAP=15°,∠BOP=30°,
故30=12t,解得:t=2.5(秒).
如图6,在△BPC中,∠BPC=105°,只有BP=PC这种情况,
此时P是弧BC的中点,或说AP是∠BAC的平分线,
∠BOP=75°,
故n=75=12t,
解得:t=6.25(秒).
综合上述:当点P运动时间为5,10秒,四边形ABPC为等腰梯形;
当点P运动时间为7.5,11.25秒,三角形ABP为等腰三角形;
当点P运动时间为2.5秒,三角形APC为正三角形;
当点P运动时间为6.25秒,三角形BPC为等腰三角形.
∵∠BAC=75°,∴∠CAO=30°,
∵AO=CO,
∴∠CAO=∠OCA=30°,
∴∠AOC=180°-30°-30°=120°,
∴∠BOC=360°-90°-120°=150°,
∵∠BOP=n°,则
π |
5 |
3πn |
180 |
当n=150°时,150°=12t,t=12.5,故0≤t≤12.5.
(2)①∠BOP=n°,n=12t.
如图1,当BP∥AC时,t=5秒,四边形PBAC为等腰梯形.
理由:∵∠PBA=180°-75°=105°,
∵∠OBA=45°∴∠OBP=60°,OB=OP,
∴∠BOP=60°,则60=12t,
解得:t=5(秒),
又∵∠AOP=150°,∠ACP=75°,∴AB 与PC不平行.
又∵∠POC=150°-60°=90°=∠AOB,
∴AB=PC,∴四边形PBAC为等腰梯形.
如图2,当PC∥AB时,n=120=12t,解得:t=10(秒)
理由:∵∠CPB=180°-75°=105°,
∵∠OBA=45°,∴∠OBP=30°,OB=OP,
∴∠BOP=120°,则120=12t,
解得:t=10(秒),

又∵∠ACP=180°-75°=105°,∠BPC=105°,∴PB与AC不平行.
又∵∠POB=120°=∠AOC,
∴PB=AC,∴四边形PBAC为等腰梯形.
②在△ABP中,以AB为腰时(如图3),
∵∠BPA=∠BAP=45°,
∴∠BOP=45°+45°=90°,
故n=90=12t,解得:t=7.5(秒),
以AB为底边时(如图4),
∵∠BPA=
1 |
2 |
故135=12t,
解得:t=11.25(秒).
如图5.在△APC中,∠APC=60°,△APC是等边三角形,
∴∠BAP=15°,∠BOP=30°,
故30=12t,解得:t=2.5(秒).
如图6,在△BPC中,∠BPC=105°,只有BP=PC这种情况,
此时P是弧BC的中点,或说AP是∠BAC的平分线,
∠BOP=75°,
故n=75=12t,
解得:t=6.25(秒).
综合上述:当点P运动时间为5,10秒,四边形ABPC为等腰梯形;
当点P运动时间为7.5,11.25秒,三角形ABP为等腰三角形;
当点P运动时间为2.5秒,三角形APC为正三角形;
当点P运动时间为6.25秒,三角形BPC为等腰三角形.
看了 如图,在半径为3厘米的⊙O中...的网友还看了以下:
期中考试总结反思要从优势劣势改进措施写300字以上这次总分580我519数 2020-04-07 …
设随机变量X和Y相互独立,X在区间[0,5]上服从均匀分布设随机变量X,Y相互独立,X在[0,5] 2020-04-13 …
下页图中①~⑤代表五种运输方式,纵坐标1~5代表各种运输方式(除管道外)四项指标的从优到劣顺序。在 2020-06-21 …
为什么要找到最短的劣弧,就要找到最大的半径?为什么圆的半径越大,过两定点的劣弧就短,半径越大,劣弧 2020-06-23 …
地理劣弧原则,劣弧是过这两点任意圆上的小于180的度的弧,还是两点间的任意连线不同经度和纬度的两个 2020-06-23 …
图是“铁路、公路、河运、海运、航空五种交通运输方式技术经济特征比较示意图”,图中1至5表示从优到劣 2020-06-23 …
地球表面两点间最短距离怎么计算?我们老师说,过两点的球面大圆的劣弧为最短距离,若两点都在北半球,则 2020-06-23 …
3道画流程图的题(6月23号前要阿!)1.求1000以内所有能被5和7整除的数之和.2.求fibo 2020-06-23 …
从5个中选3个(C53)和从5个中选2个再从剩余3个中选1个(C52*C31)从5个中选3个(C5 2020-06-30 …
将小白鼠和青蛙从5℃的温度中移至25℃的环境中饲养,小白鼠和青蛙耗氧量的变化是A.小白鼠减少,青蛙 2020-07-12 …