早教吧作业答案频道 -->数学-->
已知正方形ABCD的边长是13,平面ABCD外一点P到正方形各顶点的距离都为13,M、N分别是PA、BD上的点且PM:MA=BN:ND=5:8,如图.(1)求证:直线MN∥平面PBC;(2)求线段MN的长.
题目详情
已知正方形ABCD的边长是13,平面ABCD外一点P到正方形各顶点的距离都为13,M、N分别是PA、BD上的点且PM:MA=BN:ND=5:8,如图.

(1)求证:直线MN∥平面PBC;
(2)求线段MN的长.

(1)求证:直线MN∥平面PBC;
(2)求线段MN的长.
▼优质解答
答案和解析
(1)证明:连结AN并延长和BC交于E点,由PM:MA=BN:ND=5:8,可得EN:NA=BN:ND=MP:MA=5:8,
即
=
,∴MN∥PE,而MN⊄平面PBC,PE⊂面PBC,
∴MN∥平面PBC.
(2)由于△PBC是边长为13的等边三角形,
余弦定理求得PE2=PB2+BE2-2PB•EBcos60°=132+(
)2-2×13×
×
=
,
∴PE=
.
由于△AMN 与△APE的相似比为
,∴MN=
PE=7.
(1)证明:连结AN并延长和BC交于E点,由PM:MA=BN:ND=5:8,可得EN:NA=BN:ND=MP:MA=5:8,即
| NE |
| NA |
| PM |
| MA |
∴MN∥平面PBC.
(2)由于△PBC是边长为13的等边三角形,
余弦定理求得PE2=PB2+BE2-2PB•EBcos60°=132+(
| 13 |
| 2 |
| 13 |
| 2 |
| 1 |
| 2 |
| 8281 |
| 64 |
∴PE=
| 91 |
| 8 |
由于△AMN 与△APE的相似比为
| 8 |
| 13 |
| 8 |
| 13 |
看了 已知正方形ABCD的边长是1...的网友还看了以下:
已知函数y=2/x和y=6/x-2,A(1,n)、B(m,4)两点均在函数y=2/x的图像上,设两 2020-05-16 …
已知数列{an}的前n项和为Sn,当n≥2时,点(1/S(n-1),1/Sn)在f(x)=x+2的 2020-05-16 …
已知数列an的前n项和为sn,当n≥2时,点(1/Sn-1,1/Sn)在f(x)=x+2的图像上, 2020-05-16 …
2^2-1^2=2*1+13^2-2^2=2*2+14^2-3^2=2*3+1……(n+1)^2- 2020-05-19 …
1、点A的坐标为(2√2,0).把点A绕着坐标远点顺时针旋转135°到点B.那么点B的坐标是.2、 2020-06-14 …
已知数列an中a1=1/2,点(n,2an+1-an)在直线y=x上其n=1,2,3……(n,2a 2020-07-09 …
定积分定义求极限的两个理解的问题Sn=(1/n){1/(2+1/n)+1/(2+3/n)+.... 2020-07-31 …
数学难题(1)用数学归纳法,证明对于所有正整数n,下列各命题都正确1+3+6+.n(n+1)/2= 2020-08-03 …
求教一个数学合情推理的问题通过计算可得下列等式2^2-1^2=2*1+13^2-2^2=2*2+14 2020-11-21 …
已知直线y=[-(n+1)/(n+2)]x+[1/(n+2)](n为正整数)与两坐标轴围成的三角形面 2021-02-03 …