早教吧作业答案频道 -->数学-->
若等差数列{An}公差为d,等比数列{Bn}公比为q,求数列{AnBn}前n项和Sn.
题目详情
若等差数列{An}公差为d,等比数列{Bn}公比为q,求数列{AnBn}前n项和Sn.
▼优质解答
答案和解析
A[n]=A+(n-1)d,首项为A,公差为d
B[n]=Bq^(n-1),首项为B,公比为q
A[n]B[n]
=[A+(n-1)d]*[Bq^(n-1)]
=ABq^(n-1)+dB(n-1)q^(n-1)
记A[n]B[n]=ABC[n]+dBD[n],其中C[n]=q^(n-1),D[n]=(n-1)q^(n-1)
则S[n]=A[1]B[1]+A[2]B[2]+...+A[n]B[n]
=(ABC[1]+dBD[1])+(ABC[2]+dBD[2])+...+(ABC[n]+dBD[n])
=AB(C[1]+C[2]+...+C[n])+dB(D[1]+D[2]+...+D[n])
=ABN[n]+dBM[n],其中N[n]为数列{C[n]}前n项和,M[n]为数列{D[n]}前n项和
q=1时,
C[n]=q^(n-1)=1
N[n]=C[1]+C[2]+...+C[n]=1+1+...+1=n
D[n]=(n-1)q^(n-1)=n-1
M[n]=D[1]+D[2]+...+D[n]=0+1+2+..+(n-1)=n(n-1)/2
S[n]=ABN[n]+dBM[n]=ABn+dBn(n-1)/2(q=1)
q≠1时,
N[n]=C[1]+C[2]+...+C[n]=1+q+q^2+...+q^(n-1)=(1-q^n)/(1-q)
M[n]=D[1]+D[2]+...+D[n]=0*1+1*q+2*q^2+...+(n-1)q^(n-1)=1*q+2*q^2+...+(n-1)q^(n-1)
qM[n]=q*[1*q+2*q^2+...+(n-1)q^(n-1)]=1*q^2+2*q^3+...+(n-1)q^n
M[n]-qM[n]=(1-q)M[n]=
=[1*q+2*q^2+...+(n-1)q^(n-1)]-[1*q^2+2*q^3+...+(n-1)q^n]
=1*q+1*q^2+1*q^3+...+1*q^(n-1)-(n-1)q^n
=q+q^2+...+q^(n-1)+q^n-nq^n
=q(1-q^n)/(1-q)-nq^n
so,M[n]=q(1-q^n)/(1-q)^2-nq^n/(1-q)
so,S[n]=ABN[n]+dBM[n]=AB(1-q^n)/(1-q)+dB[q(1-q^n)/(1-q)^2-nq^n/(1-q)](q≠1)
B[n]=Bq^(n-1),首项为B,公比为q
A[n]B[n]
=[A+(n-1)d]*[Bq^(n-1)]
=ABq^(n-1)+dB(n-1)q^(n-1)
记A[n]B[n]=ABC[n]+dBD[n],其中C[n]=q^(n-1),D[n]=(n-1)q^(n-1)
则S[n]=A[1]B[1]+A[2]B[2]+...+A[n]B[n]
=(ABC[1]+dBD[1])+(ABC[2]+dBD[2])+...+(ABC[n]+dBD[n])
=AB(C[1]+C[2]+...+C[n])+dB(D[1]+D[2]+...+D[n])
=ABN[n]+dBM[n],其中N[n]为数列{C[n]}前n项和,M[n]为数列{D[n]}前n项和
q=1时,
C[n]=q^(n-1)=1
N[n]=C[1]+C[2]+...+C[n]=1+1+...+1=n
D[n]=(n-1)q^(n-1)=n-1
M[n]=D[1]+D[2]+...+D[n]=0+1+2+..+(n-1)=n(n-1)/2
S[n]=ABN[n]+dBM[n]=ABn+dBn(n-1)/2(q=1)
q≠1时,
N[n]=C[1]+C[2]+...+C[n]=1+q+q^2+...+q^(n-1)=(1-q^n)/(1-q)
M[n]=D[1]+D[2]+...+D[n]=0*1+1*q+2*q^2+...+(n-1)q^(n-1)=1*q+2*q^2+...+(n-1)q^(n-1)
qM[n]=q*[1*q+2*q^2+...+(n-1)q^(n-1)]=1*q^2+2*q^3+...+(n-1)q^n
M[n]-qM[n]=(1-q)M[n]=
=[1*q+2*q^2+...+(n-1)q^(n-1)]-[1*q^2+2*q^3+...+(n-1)q^n]
=1*q+1*q^2+1*q^3+...+1*q^(n-1)-(n-1)q^n
=q+q^2+...+q^(n-1)+q^n-nq^n
=q(1-q^n)/(1-q)-nq^n
so,M[n]=q(1-q^n)/(1-q)^2-nq^n/(1-q)
so,S[n]=ABN[n]+dBM[n]=AB(1-q^n)/(1-q)+dB[q(1-q^n)/(1-q)^2-nq^n/(1-q)](q≠1)
看了 若等差数列{An}公差为d,...的网友还看了以下:
等差数列公式,前n项和;等比数列公式,前n项和;等差等比中项公式... 2020-05-13 …
如图所示,虚线a、b、c是电场中的三个等差等势面,实线为一个带正电的质点仅在电场力作用下通过该区域 2020-05-15 …
对于电场中A、B两点,下列说法正确的是()A.电势差的定义式UAB=WABq,说明两点间的电势差U 2020-05-20 …
定义:如果一个数列从第二项起,每一项与前一项的差依次构成一个等比数列,则称这个数列为差等比数列,如 2020-06-03 …
构造下面推论的证明:(1)前提:p→q结论:p→(p∧q)(2)前提:q→p,q→←s,s→←t, 2020-06-29 …
1.已知等差数列{an}中,|a3|=|a9|,公差d小于0,则使其前n项和Sn取得最大值的自然数 2020-07-09 …
等差等比数列已知等差数列{An}的第4项与第2项之差为4,且a3,a4,a7是等比数列{Bn}的前 2020-07-09 …
等差数列要和等比数列如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等 2020-07-23 …
离散数学中环算几条边K4有几边几面构造下面推理证明(1)前提:┑(p∧q),┑q∧r,┑r结论:┑ 2020-07-30 …
“电场中某点的电势等于该点跟选定的标准位置(零电势点)间的电势差,φ=Ep/q,φ在数值上等于单位正 2021-01-02 …