早教吧作业答案频道 -->数学-->
观察下列各式:(x-1)(x+1)=x2-1,(x-1)(x2+x+1)=x3-1,(x-1)(x3+x2+x+1)=x4-1,(x-1)(x4+x3+x2+x+1)=x5-1,(1)根据前面各式的规律可得:(x-1)(xn+xn-1+…+x2+x+1)=(其中n为正整数
题目详情
观察下列各式:
(x-1)(x+1)=x2-1,
(x-1)(x2+x+1)=x3-1,
(x-1)(x3+x2+x+1)=x4-1,
(x-1)(x4+x3+x2+x+1)=x5-1,
(1)根据前面各式的规律可得:(x-1)(xn+xn-1+…+x2+x+1)=______(其中n为正整数).
(2)根据(1)求1+2+22+23+…+262+263的值,并求出它的个位数字.
(x-1)(x+1)=x2-1,
(x-1)(x2+x+1)=x3-1,
(x-1)(x3+x2+x+1)=x4-1,
(x-1)(x4+x3+x2+x+1)=x5-1,
(1)根据前面各式的规律可得:(x-1)(xn+xn-1+…+x2+x+1)=______(其中n为正整数).
(2)根据(1)求1+2+22+23+…+262+263的值,并求出它的个位数字.
▼优质解答
答案和解析
(1)根据各式的规律可得:(x-1)(xn+xn-1+…+x2+x+1)=xn+1-1;
(2)根据各式的规律得:1+2+22+23+…+262+263=(2-1)(263+262+…+23+22+2+1)=264-1,
∵21=2,22=4,23=8,24=16,25=32,…,且64÷4=16,
∴264个位上数字为6,
则1+2+22+23+…+262+263的个位数字为5.
故答案为:(1)xn+1-1.
(2)根据各式的规律得:1+2+22+23+…+262+263=(2-1)(263+262+…+23+22+2+1)=264-1,
∵21=2,22=4,23=8,24=16,25=32,…,且64÷4=16,
∴264个位上数字为6,
则1+2+22+23+…+262+263的个位数字为5.
故答案为:(1)xn+1-1.
看了 观察下列各式:(x-1)(x...的网友还看了以下:
有一个高为1.1米的正方体水池刚好能装满28桶水,已知水桶是一个圆柱体,...有一个高为1.1米的 2020-05-20 …
求大神答会计题判断题(共10题,每题2分,共计20分)1记账凭证可以根据每一张原始凭证填制,或根据 2020-06-10 …
1.数据结构是指()。A.数据元素的组织形式B.数据类型C.数据存储结构D.数据定义2.数据在计算 2020-06-28 …
一、我们知道1/1×2=1/1-1/2=1/2,1/2×3=1/2-1/3=1/6验证:1/3×4 2020-07-17 …
直角三角形1:1:根号2请问各路高手:直角三角形三个角分别为30°60°90°我想问的是:1:1: 2020-07-22 …
寻找规律解数学题1/1*2=1-1/22/2*3=1/2-1/31/3*4=1/3-1/4……计算 2020-07-22 …
由下列各式:1>1/2,1+1/2+1/3>1有下列各式:1>1/2;1+1/2+1/3>1;1+1 2020-10-30 …
物质分类的方法:可以根据研究需要从多种角度进行分类:物质的分类1、物质分类的方法:可以根据研究需要从 2020-11-03 …
在遥感技术中,可以根据植物的反射波谱特征判断植物的生长状况。读图3,回答1-2题。1.根据图中信息可 2020-11-03 …
计算一道数学题,(1+1/2)×(1+1/3)×(1+1/4)×(1+1/5)×(1+1/6)×(1 2020-11-30 …