早教吧作业答案频道 -->数学-->
如图,半圆O的直径AD=12cm,AB,BC,CD分别与半圆O切于点A,E,D.(1)设AB=x,CD=y,求y与x之间的函数关系式;(2)如果CD=6,判断四边形ABCD的形状;(3)如果AB=4,求图中阴影部分的面积.
题目详情
如图,半圆O的直径AD=12cm,AB,BC,CD分别与半圆O切于点A,E,D.

(1)设AB=x,CD=y,求y与x之间的函数关系式;
(2)如果CD=6,判断四边形ABCD的形状;
(3)如果AB=4,求图中阴影部分的面积.

(1)设AB=x,CD=y,求y与x之间的函数关系式;
(2)如果CD=6,判断四边形ABCD的形状;
(3)如果AB=4,求图中阴影部分的面积.
▼优质解答
答案和解析
(1)连接OB、OE、OC
∵AB,BC分别与半圆O切于点A,E,∴BE=BA,∠OEB=∠OAB=90°
∴△OAB≌△OEB
∴∠EOB=∠AOB
同理,∵BC,CD分别与半圆O切于点E,D
∴△COE≌△COD
∴∠COD=∠COE
∵∠AOB+∠EOB+∠COE+∠COD=180°
∴∠BOE+∠COE=90°
∴OB⊥OC
∵OB2=OA2+AB2=36+x2;OC2=OD2+CD2=36+y2;
∵BE=AB=x,CE=CD=y;BC=x+y.
∴(x+y)2=36+x2+36+y2;
∴xy=36;
化简可得:y=
;
(2)若CD=6,又有半圆O的直径AD=12cm;即OE=6;故OE∥DC∥AB.
则四边形ABCD的形状是矩形;
(3)过点B作BF⊥CD于F,
∵BA是半圆O的切线,AD是半圆O的直径,
∴BA⊥AD.
又∵CD⊥AD,
∴四边形ABFD是矩形,
∴BF=AD=12,FD=BA=4.
∴CF=5,
∵CB、BA和CD都是半圆O的切线,
∴CE=CD=9,BE=BA=4.
∴CB=CE+EB=13,
∵S半圆=
π×62=18π,S梯形ABCD=
(4+9)•12=78,
∴S阴=S梯-S半圆=78-18π
说明:(1)(4分);(2)(3分);(3)(5分).
(1)连接OB、OE、OC∵AB,BC分别与半圆O切于点A,E,∴BE=BA,∠OEB=∠OAB=90°
∴△OAB≌△OEB
∴∠EOB=∠AOB
同理,∵BC,CD分别与半圆O切于点E,D
∴△COE≌△COD
∴∠COD=∠COE
∵∠AOB+∠EOB+∠COE+∠COD=180°
∴∠BOE+∠COE=90°
∴OB⊥OC
∵OB2=OA2+AB2=36+x2;OC2=OD2+CD2=36+y2;
∵BE=AB=x,CE=CD=y;BC=x+y.
∴(x+y)2=36+x2+36+y2;
∴xy=36;
化简可得:y=
| 36 |
| x |
(2)若CD=6,又有半圆O的直径AD=12cm;即OE=6;故OE∥DC∥AB.
则四边形ABCD的形状是矩形;
(3)过点B作BF⊥CD于F,

∵BA是半圆O的切线,AD是半圆O的直径,
∴BA⊥AD.
又∵CD⊥AD,
∴四边形ABFD是矩形,
∴BF=AD=12,FD=BA=4.
∴CF=5,
∵CB、BA和CD都是半圆O的切线,
∴CE=CD=9,BE=BA=4.
∴CB=CE+EB=13,
∵S半圆=
| 1 |
| 2 |
| 1 |
| 2 |
∴S阴=S梯-S半圆=78-18π
说明:(1)(4分);(2)(3分);(3)(5分).
看了 如图,半圆O的直径AD=12...的网友还看了以下:
△ABC是直角三角形,∠C=90°分别以三边为直径向外作半圆则以AC为直径的半圆面积是多少?△AB 2020-05-13 …
如图,C、D是线段AB上两点,且AC=BD=16AB=1,点P是线段CD上一个动点,在AB同侧分别 2020-06-15 …
已知线段AB=6,C、D是AB上两点,且AC=DB=1,P是线段CD上一动点,在AB同侧分别作等边 2020-06-20 …
已知线段AB=6,C、D是AB上两点,且AC=DB=1,P是线段CD上一动点,在AB同侧分别作等边 2020-06-20 …
三角形的面积,a,b,c为三角形的边长,r为三角形内切圆的半径,利用类比推理,可得出四面体的体积为 2020-07-23 …
图形等边三角形ABC的边长为6厘米,其中DEF分别是各边的中点,分别以ABC为圆心,AD,BE,C 2020-07-29 …
(2000•湖州)如图,已知AB是⊙O的直径,PC切⊙O于C,AD⊥PD,CM⊥AB,垂足分别为D 2020-07-31 …
如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且DE=BE.(1)试 2020-11-30 …
已知线段AB=10,C.D是AB上两点,且AC=DB=2,P是线段CD上一动点,在AB同侧分别作等边 2020-12-27 …
已知线段AB=6,C、D是AB上两点,且AC=DB=1,P是线段CD上一动点,在AB同侧分别作等边三 2020-12-27 …