早教吧 育儿知识 作业答案 考试题库 百科 知识分享

为什么四边形的长和宽的长度越相近,面积就越大?为什么四边形的长和宽的长度越相近,面积就越大.为什么圆的面积最大?

题目详情
为什么四边形的长和宽的长度越相近,面积就越大?
为什么四边形的长和宽的长度越相近,面积就越大.为什么圆的面积最大?
▼优质解答
答案和解析
周长相等:圆的面积最大 举例:如三角形、正方形、圆在周长均为12 1.三角形(拿等边三角形为例):3X=12,则边长为4,高为2倍根号3,面积为4倍根号3 2.正方形:边长为3,面积为9 3.圆:2∏R=12,则R=∏分之6,则面积为=∏分之36 故:周长相等的情况下:圆面积>正方形面积>三角形面积 稍繁一点的 首先证明在边数相等的情况下正多边形的面积最大——比如若两相邻的边不等,容易证明在保持长度和不变的情况下一旦将它们换成相等时,比原面积要大,所以面积最大的是正多边形.然后证明边数约大面积越大,方法是将正多边形像切蛋糕那样从中心点切成一片一片三角形,每一个三角形的面积等于边长乘以中心到边的距离除以2,于是整个多边形的面积等于周长乘以中心到边的距离除以2,周长一定时,中心到边的距离越长,面积越大.可证,边长越多时中心到边的距离越大,因为中心到边的距离为cot2PI/2N * C/2N,分别代入N和N'后相除比较大小即可,当边长趋于无穷时,中心到边的距离趋近于中心到顶点的距离,这时候面积是最大的.
看了 为什么四边形的长和宽的长度越...的网友还看了以下: