早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,抛物线y=ax2+bx+c,与x轴交于点A(-1,0),顶点坐标为(1,n),与y轴交点在(0,2)、(0,3)之间(包含端点),有下列结论:①abc>0;②4ac-b2>0;③当x=3时,y=0;④3a+b>0;⑤-1

题目详情

如图,抛物线y=ax2+bx+c,与x轴交于点A(-1,0),顶点坐标为(1,n),与y轴交点在(0,2)、(0,3)之间(包含端点),有下列结论:①abc>0;②4ac-b2>0;③当x=3时,y=0;④3a+b>0;⑤-1≤a≤-

2
3
,;⑥
8
3
≤n≤4,其中正确的有(  )
作业帮

A. 1个

B. 2个

C. 3个

D. 4个

▼优质解答
答案和解析

由函数图象可a<0,b>0,c>0,
∴abc<0,故①错误;
∵函数图象和x轴有两个交点,
∴b2-4ac>0,
即4ac-b2<0,故②错误;
∵抛物线y=ax2+bx+c与x轴交于点A(-1,0),对称轴直线是x=1,
∴该抛物线与x轴的另一个交点的坐标是(3,0),
∴当x=3时,y=0,故③正确;
根据图示知,抛物线开口方向向下,则a<0.
∵对称轴x=-
b
2a
=1,
∴b=-2a,
∴3a+b=3a-2a=a<0,即3a+b<0.故④错误;
∵抛物线与x轴的两个交点坐标分别是(-1,0),(3,0),
∴-1×3=-3,
c
a
=-3,则a=-
c
3

∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),
∴2≤c≤3,
∴-1≤-
c
3
≤-
2
3
,即-1≤a≤
2
3
.故⑤正确;
根据题意知,a=-
c
3

-
b
2a
=1,
∴b=-2a=
2
3

∴n=a+b+c=
4
3
c.
∵2≤c≤3,
8
3
4
3
c≤4,
8
3
≤n≤4.故⑥正确;
综上所述,正确的说法有③⑤⑥.
故选D.