早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2009•宁德)如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.(1)求P点坐标及a的值;(2)如图(1),抛物线C2与抛物线C1关于x轴

题目详情
(2009•宁德)如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.
(1)求P点坐标及a的值;
(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;
(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.
▼优质解答
答案和解析
(1)由抛物线C1:y=a(x+2)2-5得,
顶点P的坐标为(-2,-5),
∵点B(1,0)在抛物线C1上,
∴0=a(1+2)2-5,
解得a=
5
9


(2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G,
∵点P、M关于点B成中心对称,
∴PM过点B,且PB=MB,
∴△PBH≌△MBG,
∴MG=PH=5,BG=BH=3,
∴顶点M的坐标为(4,5),
抛物线C2由C1关于x轴对称得到,抛物线C3由C2平移得到,
∴抛物线C3的表达式为y=
5
9
(x-4)2+5;

(3)∵抛物线C4由C1绕点x轴上的点Q旋转180°得到,
∴顶点N、P关于点Q成中心对称,
由(2)得点N的纵坐标为5,
设点N坐标为(m,5),
作PH⊥x轴于H,作NG⊥x轴于G,
作PK⊥NG于K,
∵旋转中心Q在x轴上,
∴EF=AB=2BH=6,
∴FG=3,点F坐标为(m+3,0).
H坐标为(-2,0),K坐标为(m,-5),
∵顶点P的坐标为(-2,-5),
根据勾股定理得:
PN2=NK2+PK2=m2+4m+104,
PF2=PH2+HF2=m2+10m+50,
NF2=52+32=34,
①当∠PNF=90°时,PN2+NF2=PF2,解得m=
44
3

∴Q点坐标为(
19
3
,0).
②当∠PFN=90°时,PF2+NF2=PN2,解得m=
10
3

∴Q点坐标为(
2
3
,0).
③∵PN>NK=10>NF,
∴∠NPF≠90°
综上所得,当Q点坐标为(
19
3
,0)或(
2
3
,0)时,以点P、N、F为顶点的三角形是直角三角形.