早教吧作业答案频道 -->数学-->
已知抛物线G1:y=a(x-h)2+2的对称轴为x=-1,且经过原点.(1)求抛物线G1的表达式;(2)将抛物线G1先沿x轴翻折,再向左平移1个单位后,与x轴分别交于A,B两点(点A在点B的左侧),与y轴
题目详情
已知抛物线G1:y=a(x-h)2+2的对称轴为x=-1,且经过原点.

(1)求抛物线G1的表达式;
(2)将抛物线G1先沿x轴翻折,再向左平移1个单位后,与x轴分别交于A,B两点(点A在点B的左侧),与y轴交于C点,求A点的坐标;
(3)记抛物线在点A,C之间的部分为图象G2(包含A,C两点),如果直线m:y=kx-2与图象G2只有一个公共点,请结合函数图象,求直线m与抛物线G2的对称轴交点的纵坐标t的值或范围.

(1)求抛物线G1的表达式;
(2)将抛物线G1先沿x轴翻折,再向左平移1个单位后,与x轴分别交于A,B两点(点A在点B的左侧),与y轴交于C点,求A点的坐标;
(3)记抛物线在点A,C之间的部分为图象G2(包含A,C两点),如果直线m:y=kx-2与图象G2只有一个公共点,请结合函数图象,求直线m与抛物线G2的对称轴交点的纵坐标t的值或范围.
▼优质解答
答案和解析
(1)∵抛物线G1:y=a(x-h)2+2的对称轴为x=-1,
∴y=a(x+1)2+2,
∵抛物线y=a(x+1)2+2经过原点,
∴a(0+1)2+2=0.
解得 a=-2,
∴抛物线G1的表达式为y=-2(x+1)2+2=-2x2-4x;
(2)由题意得,抛物线G2的表达式为y=2(x+1+1)2-2=2x2+8x+6.
∴当y=0时,x=-1或-3.
∴A(-3,0);
(3)由题意得,直线m:y=kx-2交y轴于点D(0,-2),
由抛物线G2的解析式y=2x2+8x+6,得到顶点E(-2,-2),
当直线y=kx-2过E(-2,-2)时与图象G2只有一个公共点,此时t=-2,
当直线y=kx-2过A(-3,0)时
把x=-3代入y=kx-2,k=-
,
∴y=-
x-2,
把x=-2代入y=-
x-2,
∴y=-
,即t=-
,
∴结合图象可知t=-2或t>-
.
∴y=a(x+1)2+2,
∵抛物线y=a(x+1)2+2经过原点,
∴a(0+1)2+2=0.
解得 a=-2,

∴抛物线G1的表达式为y=-2(x+1)2+2=-2x2-4x;
(2)由题意得,抛物线G2的表达式为y=2(x+1+1)2-2=2x2+8x+6.
∴当y=0时,x=-1或-3.
∴A(-3,0);
(3)由题意得,直线m:y=kx-2交y轴于点D(0,-2),
由抛物线G2的解析式y=2x2+8x+6,得到顶点E(-2,-2),
当直线y=kx-2过E(-2,-2)时与图象G2只有一个公共点,此时t=-2,
当直线y=kx-2过A(-3,0)时
把x=-3代入y=kx-2,k=-
2 |
3 |
∴y=-
2 |
3 |
把x=-2代入y=-
2 |
3 |
∴y=-
2 |
3 |
2 |
3 |
∴结合图象可知t=-2或t>-
2 |
3 |
看了 已知抛物线G1:y=a(x-...的网友还看了以下:
已知双曲线x^2/a^2-y^2/b^2=1(a>b>0)的左右两个焦点1,已知双曲线x^2/a^ 2020-05-13 …
设数列{a左}的前左项和为S左,满足a左+S左=A左2+B左+1(A≠多).(1)若a1=32,a 2020-05-14 …
已知椭圆X^2/a^2+y^2/b^2=1(a>b>C)的离心率是根号6/3,F是其左焦点,若直线 2020-05-16 …
已知双曲线x^2/a2-y^2/b^2=1(a>0,b>0)的左右两个顶点分别为A,B1,已知双曲 2020-05-17 …
已知a>0,设命题p:函数y=a^x为减函数,命题q:当x[1/2,2]时,y=x+1/x>1/a 2020-05-17 …
已知正数数列﹛an﹜中,a﹦1,前n项和为Sn,对任意n∈N*.lgSn、lgn、lg(1/a已知 2020-06-06 …
已知椭圆方程x^2+2y^2=1.设A为椭圆长轴的左端点?已知椭圆方程x^2+2y^2=1.设A为 2020-06-29 …
已知椭圆x^2/a^2加y^2/b^2=1(a>b>0)的左右焦点分别为F1,F2其右准线L与x轴 2020-06-30 …
已知常温上:KSP[Mg(OH)左]=1.左×16-11mol口•L-口KSP(AgCl)=1.b× 2020-12-24 …
已知点F是双曲线C:x^2/a^2-y^2/b^2=1(a>0,b>0)的左焦点P为右支上一点直线P 2021-01-11 …