早教吧作业答案频道 -->其他-->
如图,△ABC及△CDE均为等边三角形,B、C、E、在同一直线上.AE与BD相交于O,则下列结论:①△ACE≌△BCD;②∠AOB=∠ACB;③AC∥DE;④OC平分∠ACD中正确的有()A.①②③④B.①②④C.
题目详情

A.①②③④
B.①②④
C.①②③
D.①③④
▼优质解答
答案和解析
①∵△ABC和△DCE均是等边三角形,
∴AC=BC,CE=CD,∠ACB=∠DCE=60°,
∴∠ACB+∠ACD=∠DCE+∠ACD,
即∠BCD=∠ACE,
∵在△ACE和△BCD中
,
∴△ACE≌△BCD(SAS),①正确;
②∵△ACE≌△BCD,
∴∠CAE=∠CBD,
又∵∠AOB=∠CBD+∠AEC,∠ACB=∠CAE+∠AEC,
∴∠AOB=∠ACB,②正确;
③∵△ABC和△DCE均是等边三角形,
∴∠ACB=∠DEC=60°,
∴AC∥DE,③正确;
④设AC与BD交于点M,AE与CD交于点N.
由②可知,∠AOB=∠ACB=60°,
∴∠MON=120°.
由①△ACE≌△BCD,可得∠CAE=∠CBD,即∠MAO=∠MBC,
又∵∠AMO=∠BMC,
∴△AMO∽△BMC,
∴
=
,
∵∠AMB=∠OMC,
∴△AMB∽△OMC,
∴∠MAB=∠MOC=60°,
∴∠NOC=∠MON-∠MOC=60°.
∵∠OMC=∠OBC+∠BCA=∠EAC+60°,
∠ONC=∠OEC+∠NCE=∠AEC+60°,
在△ACE中,∵AC≠CE,
∴∠EAC≠∠AEC,
∴∠OMC≠∠ONC,
∵∠MCO=180°-∠MOC-∠OMC=180°-60°-∠OMC=120°-∠OMC,
∠NCO=180°-∠NOC-∠ONC=180°-60°-∠ONC=120°-∠ONC,
∴∠MCO≠∠NCO,即OC不平分∠ACD,④错误.
故选C.
∴AC=BC,CE=CD,∠ACB=∠DCE=60°,
∴∠ACB+∠ACD=∠DCE+∠ACD,
即∠BCD=∠ACE,
∵在△ACE和△BCD中
|
∴△ACE≌△BCD(SAS),①正确;
②∵△ACE≌△BCD,
∴∠CAE=∠CBD,
又∵∠AOB=∠CBD+∠AEC,∠ACB=∠CAE+∠AEC,
∴∠AOB=∠ACB,②正确;
③∵△ABC和△DCE均是等边三角形,
∴∠ACB=∠DEC=60°,
∴AC∥DE,③正确;

由②可知,∠AOB=∠ACB=60°,
∴∠MON=120°.
由①△ACE≌△BCD,可得∠CAE=∠CBD,即∠MAO=∠MBC,
又∵∠AMO=∠BMC,
∴△AMO∽△BMC,
∴
AM |
BM |
OM |
CM |
∵∠AMB=∠OMC,
∴△AMB∽△OMC,
∴∠MAB=∠MOC=60°,
∴∠NOC=∠MON-∠MOC=60°.
∵∠OMC=∠OBC+∠BCA=∠EAC+60°,
∠ONC=∠OEC+∠NCE=∠AEC+60°,
在△ACE中,∵AC≠CE,
∴∠EAC≠∠AEC,
∴∠OMC≠∠ONC,
∵∠MCO=180°-∠MOC-∠OMC=180°-60°-∠OMC=120°-∠OMC,
∠NCO=180°-∠NOC-∠ONC=180°-60°-∠ONC=120°-∠ONC,
∴∠MCO≠∠NCO,即OC不平分∠ACD,④错误.
故选C.
看了 如图,△ABC及△CDE均为...的网友还看了以下:
如图所示,质量均为m的物体A、B通过一个劲度系数k的轻弹簧相连,开始时B放在地面上,A、B均处于静 2020-04-06 …
绝对值比较大小的规律若两个数均为正数,a>b,则|a|与|b|的大小关系是?若两个数均为正数,a< 2020-05-20 …
三根重均为G、长均为a的相同均匀木杆(其直径d≪a)如图对称地靠在一起,三木杆底端间均相距a,求: 2020-06-14 …
设平面α⊥平面β,在平面α内的一条直线a垂直于平面β内的一条直线b,则A.直线a必垂直于平面βB. 2020-06-15 …
设ab均为n阶方阵,下面结论真确的是()A若A,B均可逆,则A+B可逆b,若A,B均可逆,则AB可 2020-06-18 …
命题及相互关系1.判断命题真假“若a的b次方为无理数,则a,b均为无理数”的逆命题2.已知命题p: 2020-07-15 …
1:平面上六条不同的直线,每两条直线相交与一点,则交点个数的最小值和最大值分别是?A.0和15B. 2020-07-19 …
A除以0.1等于B乘以0.1则A.B均不为零,问A和B谁大? 2020-07-21 …
设A,B均为n阶方阵,则下列结论正确的是().A)若A或B可逆,则必有AB可逆(B)若A或B不可逆, 2020-11-02 …
如果a,b分别表示两个有理数,若绝对值a小于b,那么下列各判断中正确的是A若绝对值a小于b,则a小于 2021-02-02 …