早教吧作业答案频道 -->数学-->
如图,在Rt△ABC中,∠ACB=90°,DE垂直平分BC,垂足为D,交AB于点E.又点F在DE的延长线上,且AF=CE.(1)求证:点E是AB的中点;(2)求证:四边形ACEF是平行四边形.
题目详情
如图,在Rt△ABC中,∠ACB=90°,DE垂直平分BC,垂足为D,交AB于点E.又点F在DE的延长线上,且AF=CE.

(1)求证:点E是AB的中点;
(2)求证:四边形ACEF是平行四边形.

(1)求证:点E是AB的中点;
(2)求证:四边形ACEF是平行四边形.
▼优质解答
答案和解析
(1)证明:∵∠ACB=90°,DE是BC的中垂线,
∴DE⊥BC,
又∵AC⊥BC,
∴DE∥AC,
又∵D为BC中点,DF∥AC,
∴DE是△ABC的中位线,
∴E为AB边的中点;
(2)证明:∵E为AB边的中点,
∴CE=AE=BE,
∵AF=CE,
∴CE=AE=AF,
∴∠ECA=∠EAC,∠AEF=∠F,
∵DE∥AC,
∴∠EAC=∠AEF,∠FEC+∠ECA=180°,
∴∠ECA=∠F,
∴∠FEC+∠F=180°,
∴AF∥CE,
∴四边形ACEF是平行四边形.
∴DE⊥BC,
又∵AC⊥BC,
∴DE∥AC,
又∵D为BC中点,DF∥AC,
∴DE是△ABC的中位线,
∴E为AB边的中点;
(2)证明:∵E为AB边的中点,
∴CE=AE=BE,
∵AF=CE,
∴CE=AE=AF,
∴∠ECA=∠EAC,∠AEF=∠F,
∵DE∥AC,
∴∠EAC=∠AEF,∠FEC+∠ECA=180°,
∴∠ECA=∠F,
∴∠FEC+∠F=180°,
∴AF∥CE,
∴四边形ACEF是平行四边形.
看了 如图,在Rt△ABC中,∠A...的网友还看了以下:
三角形函数若a,b,c是任意一个三角形的三边长,函数f(x)满足若a,b,c均是函数f(x)定义域 2020-06-02 …
1摄氏度等于多少华氏度?生活中我们一般用摄氏度(°C)来描述温度;在欧美一些国家也用华氏度(°F) 2020-06-10 …
保三角函数一个函数f(x),图过对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内, 2020-06-20 …
有没有高手教下保三角函数具体怎么解!一个函数f(x),图过对任意一个三角形,只要它的三边长a,b, 2020-06-20 …
比如A(10.0)B(a.b)C点是把AB分成3比2的点那么有没有公式(直观容纳比例A坐标B坐标) 2020-06-29 …
如A(10.0)B(a.b)C点是把AB分成3比2的点那么有没有公式(直观容纳比例A坐标B坐标)表 2020-06-29 …
一个函数f(x)如果对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内,就有f(a) 2020-07-11 …
一个函数f(x),图过对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内,就有f(a 2020-07-13 …
请问,求双曲线上两点的向量积(点积)已知,F(c,0)是双曲线x^2-y^2/2=1的右焦点,过右焦 2020-11-08 …
设f(x)在(a,b)上有连续的三阶导数,若有c属于(a,b)使得f``(x)=0且,f```(x) 2021-02-01 …