早教吧作业答案频道 -->数学-->
如图,在Rt△ABC中,∠ACB=90°,DE垂直平分BC,垂足为D,交AB于点E.又点F在DE的延长线上,且AF=CE.(1)求证:点E是AB的中点;(2)求证:四边形ACEF是平行四边形.
题目详情
如图,在Rt△ABC中,∠ACB=90°,DE垂直平分BC,垂足为D,交AB于点E.又点F在DE的延长线上,且AF=CE.

(1)求证:点E是AB的中点;
(2)求证:四边形ACEF是平行四边形.

(1)求证:点E是AB的中点;
(2)求证:四边形ACEF是平行四边形.
▼优质解答
答案和解析
(1)证明:∵∠ACB=90°,DE是BC的中垂线,
∴DE⊥BC,
又∵AC⊥BC,
∴DE∥AC,
又∵D为BC中点,DF∥AC,
∴DE是△ABC的中位线,
∴E为AB边的中点;
(2)证明:∵E为AB边的中点,
∴CE=AE=BE,
∵AF=CE,
∴CE=AE=AF,
∴∠ECA=∠EAC,∠AEF=∠F,
∵DE∥AC,
∴∠EAC=∠AEF,∠FEC+∠ECA=180°,
∴∠ECA=∠F,
∴∠FEC+∠F=180°,
∴AF∥CE,
∴四边形ACEF是平行四边形.
∴DE⊥BC,
又∵AC⊥BC,
∴DE∥AC,
又∵D为BC中点,DF∥AC,
∴DE是△ABC的中位线,
∴E为AB边的中点;
(2)证明:∵E为AB边的中点,
∴CE=AE=BE,
∵AF=CE,
∴CE=AE=AF,
∴∠ECA=∠EAC,∠AEF=∠F,
∵DE∥AC,
∴∠EAC=∠AEF,∠FEC+∠ECA=180°,
∴∠ECA=∠F,
∴∠FEC+∠F=180°,
∴AF∥CE,
∴四边形ACEF是平行四边形.
看了 如图,在Rt△ABC中,∠A...的网友还看了以下:
定义在R上的奇函数f(x)是增函数,偶函数g(x)在区间零到正无穷左闭右开上的图像与f(x)的图像重 2020-03-31 …
已知定义在R上的奇函数f(x)满足f(x+2e)=-f(x)(其中e=2.7182…),且在区间[ 2020-04-06 …
机车A拉着一节车厢B向右行驶.用F(AB)和F(BA)分别表示A对B的作用力和B对A的作用力.已知 2020-06-23 …
设函数y=fx在区间(a,b)上的导函数为f'x,f'x在区间(a,b)上的导函数为f〞x,若区( 2020-07-02 …
机车A拉着一节车厢B向右行驶.用F(AB)和F(BA)分别代表A对B和B对A的作用力,已知B行驶时 2020-07-06 …
设函数y=f(x)在区间(a,b)上的导函数为f′(x),f′(x)在区间(a,b)上的导函数为f 2020-07-14 …
函数f(X)对任意a,b都有f(a+b)=f(a)+f(b)-1,且当X〉0时有f(x)〉1.求证 2020-08-01 …
已知函数y=f(x)是定义在[a,b]上的减函数,那么y=f-1(x)是()A.在[f(a),f( 2020-08-01 …
f(x)在[a,b]上连续(a,b)上可导,且f(a)=f(b)=0证明任取k属于R,存在ξ属于(a 2020-11-03 …
设f(x)是定义在实数集R上的函数,满足f(0)=1,切对任意实数a,b有f(a-b)=f(a)-b 2020-11-20 …