早教吧作业答案频道 -->数学-->
如图,正方形ABCD的边长为3cm,P,Q分别从B,A出发沿BC,AD方向运动,P点的运动速度是1cm/秒,Q点的运动速度是2cm/秒,连接A,P并过Q作QE⊥AP垂足为E.(1)求证:△ABP∽△QEA;(2)当运动时
题目详情
如图,正方形ABCD的边长为3cm,P,Q分别从B,A出发沿BC,AD方向运动,P点的运动速度是1cm/秒,Q点的运动速度是2cm/秒,连接A,P并过Q作QE⊥AP垂足为E.

(1)求证:△ABP∽△QEA;
(2)当运动时间t为何值时,△ABP≌△QEA;
(3)设△QEA的面积为y,用运动时刻t表示△QEA的面积y(不要求考t的取值范围).(提示:解答(2)(3)时可不分先后)

(1)求证:△ABP∽△QEA;
(2)当运动时间t为何值时,△ABP≌△QEA;
(3)设△QEA的面积为y,用运动时刻t表示△QEA的面积y(不要求考t的取值范围).(提示:解答(2)(3)时可不分先后)
▼优质解答
答案和解析
(1)证明:∵四边形ABCD为正方形;
∴∠BAP+∠QAE=∠B=90°,
∵QE⊥AP;
∴∠QAE+∠EQA=∠AEQ=90°
∴∠BAP=∠EQA,∠B=∠AEQ;
∴△ABP∽△QEA(AA)
(2)∵△ABP≌△QEA;
∴AP=AQ(全等三角形的对应边相等);
在RT△ABP与RT△QEA中根据勾股定理得AP2=32+t2,AQ2=(2t)2
即32+t2=(2t)2
解得t1=
,t2=-
(不符合题意,舍去)
答:当t取
时△ABP与△QEA全等.
(3)由(1)知△ABP∽△QEA;
∴
=(
)2
∴
=(
)2
整理得:y=
.

∴∠BAP+∠QAE=∠B=90°,
∵QE⊥AP;
∴∠QAE+∠EQA=∠AEQ=90°
∴∠BAP=∠EQA,∠B=∠AEQ;
∴△ABP∽△QEA(AA)
(2)∵△ABP≌△QEA;
∴AP=AQ(全等三角形的对应边相等);
在RT△ABP与RT△QEA中根据勾股定理得AP2=32+t2,AQ2=(2t)2
即32+t2=(2t)2
解得t1=
3 |
3 |
答:当t取
3 |
(3)由(1)知△ABP∽△QEA;
∴
y |
S△ABP |
AQ |
AP |
∴
y | ||
|
2t | ||
|
整理得:y=
3t3 |
9+t2 |
看了 如图,正方形ABCD的边长为...的网友还看了以下:
关于条件概率的小疑惑~做一个假设:条件A包含事件B,那么按照定义,P(B|A)=P(AB)/P(A 2020-04-26 …
概率基本公式歧义性,我用'符号表示非A,B为两个事件,求恰好有一个发生的概率.P(AB'∪A'B) 2020-05-13 …
概率中关于事件之间的运算P(AUB)=1,为什么AUB不是全集?P(AUB)=0,为什么AB不是空 2020-05-16 …
下列式子成立的是()A.P(A|B)=P(B|A)B.0<P(B|A)<1C.P(AB)=P(A) 2020-07-15 …
P(B/A)表示什么意思?是代表在A事件发生的条件下,B事件发生的概率?可是又怎么理解这句话呢?怎 2020-07-30 …
设A,B是两个随机事件,且0<P(A)<1,P(B)>0,P(B|A)=P(B|.A),则必有()A 2020-11-01 …
概率论中,若事件A,B相互独立,则P(A-B)=0,P(B-A)=P(B)-P(A).这是怎么证的? 2020-12-01 …
设有随机事件A,B,0<P(A)<1,则下列说法必正确的是()A.若P(A∪B)=P(AB),则A= 2020-12-01 …
求证若B⊂A,则P(A-B)=P(A)-P(B)且P(A)≥P(B)……谢谢……给出一种解法,但是需 2020-12-01 …
设A、B为任意两个互斥事件,则p(b∪c|A)=p(B|A)∪P(C|A)什么错?p(B|A)等于空 2020-12-01 …