早教吧作业答案频道 -->数学-->
已知抛物线y=-x2-(m-4)x+3(m-1)与x轴交于A、B两点,与y轴交于C点.(1)求m的取值范围;(2)若m≤0,直线y=kx-1,经过点A,与y轴交于点D,且AD×BD=25,求抛物线的解析式;(3)若点A在点B的
题目详情
已知抛物线y=-x2-(m-4)x+3(m-1)与x轴交于A、B两点,与y轴交于C点.
(1)求m的取值范围;
(2)若m≤0,直线y=kx-1,经过点A,与y轴交于点D,且AD×BD=2
,求抛物线的解析式;
(3)若点A在点B的左边,在第一象限内,(2)中所得抛物线上是否存在一点P,使直线PA平分△ACD的面积?若存在,求出P点坐标,若不存在,请说明理由.
(1)求m的取值范围;
(2)若m≤0,直线y=kx-1,经过点A,与y轴交于点D,且AD×BD=2
5 |
(3)若点A在点B的左边,在第一象限内,(2)中所得抛物线上是否存在一点P,使直线PA平分△ACD的面积?若存在,求出P点坐标,若不存在,请说明理由.
▼优质解答
答案和解析
(1)∵抛物线与x轴有两个不同的交点,
∴△=(m-4)2+12(m-1)=m2+4m+4=(m+2)2>0,
∴m≠-2.
(2)∵y=-x2-(m-4)x+3(m-1)=-(x-3)(x+m-1),
∴抛物线与x轴的两个交点为:(3,0),(1-m,0);
易知D(0,-1),则有:
AD×BD=
×
=2
,
∴10×(m2-2m+2)=20,
即m2-2m=0,
解得m=0,m=2(舍去),
∴抛物线的解析式为:y=-x2+4x-3.
(3)若点A在点B左侧,则:A(1,0),B(3,0),C(0,-3);
假设存在符合题意的P点,设直线PA与y轴的交点为E,
若AE平分△DAC的面积,
则有:DE=CE,即E(0,-2);
∴直线AE的解析式为:y=2x-2;
联立抛物线的解析式有
,
解得
;
即直线AE与抛物线只有一个交点A,因此不存在符合条件的P点.
∴△=(m-4)2+12(m-1)=m2+4m+4=(m+2)2>0,
∴m≠-2.
(2)∵y=-x2-(m-4)x+3(m-1)=-(x-3)(x+m-1),
∴抛物线与x轴的两个交点为:(3,0),(1-m,0);
易知D(0,-1),则有:
AD×BD=
32+12 |
(1−m)2+12 |
5 |
∴10×(m2-2m+2)=20,
即m2-2m=0,
解得m=0,m=2(舍去),
∴抛物线的解析式为:y=-x2+4x-3.
(3)若点A在点B左侧,则:A(1,0),B(3,0),C(0,-3);
假设存在符合题意的P点,设直线PA与y轴的交点为E,
若AE平分△DAC的面积,
则有:DE=CE,即E(0,-2);
∴直线AE的解析式为:y=2x-2;
联立抛物线的解析式有
|
解得
|
即直线AE与抛物线只有一个交点A,因此不存在符合条件的P点.
看了 已知抛物线y=-x2-(m-...的网友还看了以下:
如图一次函数图象与x轴y轴交于A(6,0)B(0,23)线段AB的垂直平分线交x轴于点C交y轴于点 2020-04-08 …
关于二次函数的问题已知函数f(x)=x^2+bx+c,x属于R,f(x)的值域为大于等于1,且图像 2020-05-13 …
为什么氢根不可大于阴离子是2010年正定中学月考的一道题:已知一溶液中有4种离子:X+Y-H+OH 2020-05-22 …
已知一次函数y=kx+n上两点求经过A,B,C三点的抛物线解析式已知Y=kx+n的图像与x轴和y轴 2020-05-23 …
如图,直线AP的解析式y=kx+4k分别交于x轴、y轴于A、C两点,与反比例函数y=6x(x>0) 2020-06-14 …
已知函数f(x)=ax的平方+2x+c(x属于r)满足f(x+1=ax的平方+4.(1)求f(x) 2020-07-14 …
如图,已知直线y=-x-(k+1)与双曲线y=kx相交于B、C两点,与x轴相交于A点,BM⊥x轴交 2020-07-20 …
1.f(根号下x+1)=x+根号下x求fx解析式2.已知集合A={x|-3小于等于x小于等1.f( 2020-08-01 …
抛物线y=ax2+bx+c交x轴于A、B两点,交y于点C,已知抛物线的对称轴为x=1B(3,0),C 2020-11-27 …
函数的解析式设函数y=f(x)对任意x属于R,都有f(x+1)=af(x)(x>0).若当x属于(0 2020-12-05 …