早教吧作业答案频道 -->数学-->
(2013•嘉兴模拟)已知函数f(x)=x2+bx+c,(b,c∈R),集合A={x丨f(x)=0},B={x|f(f(x))=0},若存在x0∈B,x0∉A则实数b的取值范围是()A.b≠0B.b<0或b≥4C.0≤b<4D.b≤4或b≥4
题目详情
(2013•嘉兴模拟)已知函数f(x)=x2+bx+c,(b,c∈R),集合A={x丨f(x)=0},B={x|f(f(x))=0},若存在x0∈B,x0∉A则实数b的取值范围是( )
A. b≠0
B. b<0或b≥4
C. 0≤b<4
D. b≤4或b≥4
A. b≠0
B. b<0或b≥4
C. 0≤b<4
D. b≤4或b≥4
▼优质解答
答案和解析
由题意可得,A是函数f(x)的零点构成的集合.
由f(f(x))=0,可得 (x2+bx+c)2+b(x2+bx+c)+c=0,把x2+bx+c=0代入,解得c=0.
故函数f(x)=x2+bx,故由f(x)=0可得 x=0,或x=-b,故A={0,-b}.
方程f(f(x))=0,即 (x2+bx)2+b(x2+bx)=0,即 (x2+bx)(x2+bx+b)=0,
解得x=0,或x=-b,或 x=
.
由于存在x0∈B,x0∉A,故b2-4b≥0,解得b≤0,或b≥4.
由于当b=0时,不满足集合中元素的互异性,故舍去.
即实数b的取值范围为{b|b<0或b≥4 },
故选B.
由f(f(x))=0,可得 (x2+bx+c)2+b(x2+bx+c)+c=0,把x2+bx+c=0代入,解得c=0.
故函数f(x)=x2+bx,故由f(x)=0可得 x=0,或x=-b,故A={0,-b}.
方程f(f(x))=0,即 (x2+bx)2+b(x2+bx)=0,即 (x2+bx)(x2+bx+b)=0,
解得x=0,或x=-b,或 x=
−b±
| ||
| 2 |
由于存在x0∈B,x0∉A,故b2-4b≥0,解得b≤0,或b≥4.
由于当b=0时,不满足集合中元素的互异性,故舍去.
即实数b的取值范围为{b|b<0或b≥4 },
故选B.
看了 (2013•嘉兴模拟)已知函...的网友还看了以下:
这个悖论哪里错了?4=3已知3和4,A+B=C,求证4=3证:(4A-3A)+(4B-3B)=4C 2020-05-15 …
若A-4=B-6,则A( )B,若4分之3A=3分之4B,则A( )B若A-4=B-6,则A( 2020-05-15 …
log4(4^x+1)=x+b4^x+1=4^b*4^x为什么可以这样,给我个具体的解释log4( 2020-07-09 …
把下列各连化成最简整数比:(1)0.6:1..8:3.45(2)4又2分之1:3.6:0.81(3 2020-07-19 …
A,B,C,D四个数的和为59,问A^2+B^2+C^2+D^2,A^3+B^3+C^3+D^3, 2020-07-28 …
有字符串A="1,2,,3,4,5,4",B=",4,5,Aaa,测试,9”利用C#技术如何做出以下 2020-11-07 …
关于矩阵多项式分解举个例子例如Z是一个矩阵,要对形如a*Z^4+b*Z^2+c的矩阵多项式分解.有个 2020-11-27 …
设有定义:inta=4,b=5,c=6;以下语句中执行效果与其他三个不同的是()。设有定义:inta 2020-12-15 …
已知:n=1a^2-b^2=(a-b)(a+b);a^3-b^3=(a-b)(a^2+ab+b^2) 2020-12-23 …
①已知/a/=4,/b/=3且a>b的值②已知/a+b/=0,/a-1/2/=0求a-b的值?什么答 2021-01-13 …