早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求cosπ/13+cos3π/13+cos5π/13+cos7π/13+cos9π/13+cos11π/14的值12小时内回答的我会提高悬赏、、

题目详情
求cosπ/13+cos3π/13+cos5π/13+cos7π/13+cos9π/13+cos11π/14的值
12小时内回答的我会提高悬赏、、
▼优质解答
答案和解析
这种题目利用积化和差公式裂项求和
先求 2sin(π/13)*[cosπ/13+cos3π/13+cos5π/13+cos7π/13+cos9π/13+cos11π/13] (你的输入有点小错)
=[sin(2π/13)-sin(0)]+[sin(4π/13)-sin(2π/13)]+[sin(6π/13)-sin(4π/13)]+[sin(8π/13)-sin(6π/13)]
+[sin(10π/13)-sin(8π/13)]+[sin(12π/13)-sin(10π/13)]
=sin(12π/13)-0
=sin(12π/13)
=sin(π/13)
∴ cosπ/13+cos3π/13+cos5π/13+cos7π/13+cos9π/13+cos11π/14
=sin(π/13)/[2sin(π/13)]
=1/2
附:积化和差公式
sinαsinβ=[-cos(α+β)+cos(α-β)]/2
cosαcosβ=[cos(α+β)+cos(α-β)]/2
sinαcosβ=[sin(α+β)+sin(α-β)]/2
cosαsinβ=[sin(α+β)-sin(α-β)]/2=sinβcosα=[sin(β+α)+sin(β-α)]/2