早教吧作业答案频道 -->其他-->
e^iπ=-1为什么?别说什么是欧拉说的e^ix=cosx+isinx所以就有那个结论我问的是这个式子的证明!这个不是定义式的有人证明我看不到任何关于这个的资料(或许我弱了)总之,这个题我要严谨证
题目详情
e^iπ=-1为什么?
别说什么是欧拉说的e^ix = cosx + isinx 所以就有那个结论
我问的是这个式子的证明! 这个不是定义式的 有人证明 我看不到任何关于这个的资料(或许我弱了)
总之,这个题我要严谨证明 不要定义.
别说什么是欧拉说的e^ix = cosx + isinx 所以就有那个结论
我问的是这个式子的证明! 这个不是定义式的 有人证明 我看不到任何关于这个的资料(或许我弱了)
总之,这个题我要严谨证明 不要定义.
▼优质解答
答案和解析
要证明这个结论,需要一定的知识基础
1)泰勒级数
2)求导运算
希望已经具备。
首先给出泰勒展开公式。
一个可导函f(x)可以在 x0 点处进行展开。
f(x)=f(x0)+f'(x0)(x-x0)+f''(x0)/2! *(x-x0)^2 + f'''(x0)/3! *(x-x0)^3+……+f(n)(x0)/n! * (x-x0)^n
按照这个可以对 cosx 和 sinx 在 x=0 处进行展开
f(x)=cosx
=cos0 - sin0 * x -cos0 * x^2/2! + sin0 * x^3/3! + cos0 * x^4/4!……
= 1 - x^2/2! + x^4/4! - x^6/6! + ……
f(x)=sinx
=sin0 + cos0 * x -sin0 * x^2/2! - cos0 * x^3/3! + sin0 * x^4/4! + ……
= x - x^3/3! + x^5/5! - x^7/7! + ……
同样,也可以对 f(x) = e^x 进行 x=0 处的泰勒展开。
f(x) = e^x
=e^0 + e^0 * x + e^0 * x^2/2! + e^0 * x^3/3! + …… + e^0 * x^n/n!
=1 + x + x^2/2! + x^3/3! + …… + x^n/n!
用 ix 替换上面的x,得到 e^(ix)的多极泰勒展开。
f(x) = e^(ix)
=1 + ix - x^2/2! -ix^3/3! + x^4/4! + ix^5/5! - x^6/6!
=(1 - x^2/2! + x^4/4! - x^6/6! + ……) + i (x - x^3/3! + x^5/5! - x^7/7! + ……)
可以看到 第一个括弧中的表达式恰好与 cosx 的展开式相同,第二个括弧中的展开式与 sinx 的展开式相同。
因此
e^(ix) = cosx + isinx
1)泰勒级数
2)求导运算
希望已经具备。
首先给出泰勒展开公式。
一个可导函f(x)可以在 x0 点处进行展开。
f(x)=f(x0)+f'(x0)(x-x0)+f''(x0)/2! *(x-x0)^2 + f'''(x0)/3! *(x-x0)^3+……+f(n)(x0)/n! * (x-x0)^n
按照这个可以对 cosx 和 sinx 在 x=0 处进行展开
f(x)=cosx
=cos0 - sin0 * x -cos0 * x^2/2! + sin0 * x^3/3! + cos0 * x^4/4!……
= 1 - x^2/2! + x^4/4! - x^6/6! + ……
f(x)=sinx
=sin0 + cos0 * x -sin0 * x^2/2! - cos0 * x^3/3! + sin0 * x^4/4! + ……
= x - x^3/3! + x^5/5! - x^7/7! + ……
同样,也可以对 f(x) = e^x 进行 x=0 处的泰勒展开。
f(x) = e^x
=e^0 + e^0 * x + e^0 * x^2/2! + e^0 * x^3/3! + …… + e^0 * x^n/n!
=1 + x + x^2/2! + x^3/3! + …… + x^n/n!
用 ix 替换上面的x,得到 e^(ix)的多极泰勒展开。
f(x) = e^(ix)
=1 + ix - x^2/2! -ix^3/3! + x^4/4! + ix^5/5! - x^6/6!
=(1 - x^2/2! + x^4/4! - x^6/6! + ……) + i (x - x^3/3! + x^5/5! - x^7/7! + ……)
可以看到 第一个括弧中的表达式恰好与 cosx 的展开式相同,第二个括弧中的展开式与 sinx 的展开式相同。
因此
e^(ix) = cosx + isinx
看了 e^iπ=-1为什么?别说什...的网友还看了以下:
爱因斯坦的相对论到底是一个什么概念在爱因斯坦的相对论中,主要包含哪些内容?广义相对论与狭义相对论的 2020-05-15 …
利息理论中d(m)与i(m)的关系d=i/(1+i),那么名义贴现率d(m)和i(m)也有这种关系 2020-06-02 …
有没有I‘dnotliketodo的说法?如题我知道是省略地方的不同,理论上I‘dnotliket 2020-06-05 …
为什么广义相对论和狭义相对论我怎么都i看不懂说的什么意思麻烦简单解释下 2020-06-19 …
复数中i是什么啊?i的平方是-1,怎么这么抽象啊..还有,i在现实中有什么意义呢? 2020-07-21 …
论语古义今义论语中的不亦君子乎的君子古义是什么,今义是什么 2020-07-25 …
i定义的提问定义数学i^2=-1那么为什么i=√-1i不也可以是i=-√-1 2020-07-30 …
VB怎么定义一个三维空间的点的坐标刚会点VB,想表示一个空间点的坐标比如T(i,j,k)其中i,j, 2020-11-01 …
急中级财务管理实际利率和名义利率之间关系式中m是什么i=(1+r/m)m-1中的三个问题一、i是实际 2020-11-21 …
问:复数z乘以-i的几何意义是什么?i^2=-1的几何意义是什么? 2021-01-24 …