早教吧作业答案频道 -->其他-->
(2012•泰州)如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5.OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)试判断线段AB与AC的数量关系,并说明理由;(2)若PC=25,求
题目详情
(2012•泰州)如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5.OA与⊙
O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.
(1)试判断线段AB与AC的数量关系,并说明理由;
(2)若PC=2
,求⊙O的半径和线段PB的长;
(3)若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,求⊙O的半径r的取值范围.

(1)试判断线段AB与AC的数量关系,并说明理由;
(2)若PC=2
5 |
(3)若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,求⊙O的半径r的取值范围.
▼优质解答
答案和解析
(1)AB=AC,理由如下:
连接OB.
∵AB切⊙O于B,OA⊥AC,
∴∠OBA=∠OAC=90°,
∴∠OBP+∠ABP=90°,∠ACP+∠APC=90°,
∵OP=OB,
∴∠OBP=∠OPB,
∵∠OPB=∠APC,
∴∠ACP=∠ABC,
∴AB=AC;
(2)延长AP交⊙O于D,连接BD,
设圆半径为r,则OP=OB=r,PA=5-r,
则AB2=OA2-OB2=52-r2,
AC2=PC2-PA2=(2
)2-(5-r)2,
∴52-r2=(2
)2-(5-r)2,
解得:r=3,
∴AB=AC=4,
∵PD是直径,
∴∠PBD=90°=∠PAC,
又∵∠DPB=∠CPA,
∴△DPB∽△CPA,
∴
=
,
∴
=
,
解得:PB=
.
∴⊙O的半径为3,线段PB的长为
;
(3)作出线段AC的垂直平分线MN,作OE⊥MN,则可以推出OE=
AC=
AB=

连接OB.
∵AB切⊙O于B,OA⊥AC,
∴∠OBA=∠OAC=90°,
∴∠OBP+∠ABP=90°,∠ACP+∠APC=90°,
∵OP=OB,
∴∠OBP=∠OPB,
∵∠OPB=∠APC,
∴∠ACP=∠ABC,
∴AB=AC;
(2)延长AP交⊙O于D,连接BD,
设圆半径为r,则OP=OB=r,PA=5-r,
则AB2=OA2-OB2=52-r2,
AC2=PC2-PA2=(2
5 |
∴52-r2=(2
5 |
解得:r=3,
∴AB=AC=4,
∵PD是直径,
∴∠PBD=90°=∠PAC,

又∵∠DPB=∠CPA,
∴△DPB∽△CPA,
∴
CP |
PD |
AP |
BP |
∴
2
| ||
3+3 |
5−3 |
BP |
解得:PB=
6
| ||
5 |
∴⊙O的半径为3,线段PB的长为
6
| ||
5 |
(3)作出线段AC的垂直平分线MN,作OE⊥MN,则可以推出OE=
1 |
2 |
1 |
2 |
1 |
2 |
看了 (2012•泰州)如图,已知...的网友还看了以下:
如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P 2020-05-16 …
平面直角坐标系 点P坐标(3,4),请问点P到原点O的距离是多少?请列出解题公式符合八年级学生所学 2020-05-16 …
求已知空间直角坐标系点p坐标2,3,4位置的确定 2020-06-04 …
平面直角坐标系点P(X+1,X)在第四象限则X的取值范围是 2020-06-07 …
定义:当点P在射线OA上时,把OPOA的值叫做点P在射线OA上的射影值;当点P不在射线OA上时,把 2020-06-08 …
如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=10厘米,OC=6厘米,现有 2020-06-13 …
如图①,在平面直角坐标系中,点A的坐标为(8,6),连结OA,动点P从点O出发,以每秒5个单位长度 2020-06-14 …
在平面直角坐标系xOy中,过点P(5,3)作直线l与圆x2+y2=4相交于A,B两点,若OA⊥OB 2020-07-15 …
已知,在平面直角坐标系中,A、B两点分别在x轴、y轴的正半轴上,且OB=OA=3,点P是与y轴平行 2020-07-29 …
如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(3,0),C(0,2), 2020-07-30 …