早教吧作业答案频道 -->其他-->
(2012•泰州)如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5.OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)试判断线段AB与AC的数量关系,并说明理由;(2)若PC=25,求
题目详情
(2012•泰州)如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5.OA与⊙
O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.
(1)试判断线段AB与AC的数量关系,并说明理由;
(2)若PC=2
,求⊙O的半径和线段PB的长;
(3)若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,求⊙O的半径r的取值范围.
O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)试判断线段AB与AC的数量关系,并说明理由;
(2)若PC=2
| 5 |
(3)若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,求⊙O的半径r的取值范围.
▼优质解答
答案和解析
(1)AB=AC,理由如下:
连接OB.
∵AB切⊙O于B,OA⊥AC,
∴∠OBA=∠OAC=90°,
∴∠OBP+∠ABP=90°,∠ACP+∠APC=90°,
∵OP=OB,
∴∠OBP=∠OPB,
∵∠OPB=∠APC,
∴∠ACP=∠ABC,
∴AB=AC;
(2)延长AP交⊙O于D,连接BD,
设圆半径为r,则OP=OB=r,PA=5-r,
则AB2=OA2-OB2=52-r2,
AC2=PC2-PA2=(2
)2-(5-r)2,
∴52-r2=(2
)2-(5-r)2,
解得:r=3,
∴AB=AC=4,
∵PD是直径,
∴∠PBD=90°=∠PAC,
又∵∠DPB=∠CPA,
∴△DPB∽△CPA,
∴
=
,
∴
=
,
解得:PB=
.
∴⊙O的半径为3,线段PB的长为
;
(3)作出线段AC的垂直平分线MN,作OE⊥MN,则可以推出OE=
AC=
AB=

连接OB.
∵AB切⊙O于B,OA⊥AC,
∴∠OBA=∠OAC=90°,
∴∠OBP+∠ABP=90°,∠ACP+∠APC=90°,
∵OP=OB,
∴∠OBP=∠OPB,
∵∠OPB=∠APC,
∴∠ACP=∠ABC,
∴AB=AC;
(2)延长AP交⊙O于D,连接BD,
设圆半径为r,则OP=OB=r,PA=5-r,
则AB2=OA2-OB2=52-r2,
AC2=PC2-PA2=(2
| 5 |
∴52-r2=(2
| 5 |
解得:r=3,
∴AB=AC=4,
∵PD是直径,
∴∠PBD=90°=∠PAC,

又∵∠DPB=∠CPA,
∴△DPB∽△CPA,
∴
| CP |
| PD |
| AP |
| BP |
∴
2
| ||
| 3+3 |
| 5−3 |
| BP |
解得:PB=
6
| ||
| 5 |
∴⊙O的半径为3,线段PB的长为
6
| ||
| 5 |
(3)作出线段AC的垂直平分线MN,作OE⊥MN,则可以推出OE=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
看了 (2012•泰州)如图,已知...的网友还看了以下:
若平面内一条直线l与曲线C有且仅有一个公共点,下列命题正确的是(填序号)①若C是圆,则l与一定相切 2020-05-15 …
已知圆C:(x-3)^2+(y-4)^2=4,直线L过定点A(1,0)1.若L与圆相切,求L的方程 2020-06-27 …
已知圆C:x^2+y^2+2x-6y+1=0,直线l:x+my=31 若l与C相切,求M的值2 是 2020-06-27 …
已知直线L:(m-1)x+2y+2m=0.(1)求证:直线L过定点P(2)若直线L与x轴负半已知直 2020-07-22 …
已知圆O:x2+y2=2,直线l:y=kx-2。(1)若直线l与圆O相切,求k的值;(2)若直线l 2020-07-30 …
已知直线l:x/m+y/(4-m)=1①若直线的斜率是2,求m的值②当直线l与两坐标轴的正半轴已知 2020-07-31 …
已知抛物线C:y2=4x的焦点F,过F的直线l与C相交于A,B两点,若AB的垂直平分线l.已知抛物 2020-08-03 …
已知直线l:y=x+m,m∈R,若以点M(2,0)为圆心的圆与直线l相切点p,且点p在y轴上.问: 2020-08-03 …
设l,m,n为三条不同的直线,a为一个平面,对于下列命题:①若l⊥a,则l与a相交;②若m⊂a,n⊂ 2020-11-02 …
若直线l与平面α平行,则l与α内任何一条直线都没有公共点?若直线l与平面α平行,则l与α内任何一条直 2020-12-05 …