早教吧作业答案频道 -->其他-->
(2012•泰州)如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5.OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)试判断线段AB与AC的数量关系,并说明理由;(2)若PC=25,求
题目详情
(2012•泰州)如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5.OA与⊙
O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.
(1)试判断线段AB与AC的数量关系,并说明理由;
(2)若PC=2
,求⊙O的半径和线段PB的长;
(3)若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,求⊙O的半径r的取值范围.
O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)试判断线段AB与AC的数量关系,并说明理由;
(2)若PC=2
| 5 |
(3)若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,求⊙O的半径r的取值范围.
▼优质解答
答案和解析
(1)AB=AC,理由如下:
连接OB.
∵AB切⊙O于B,OA⊥AC,
∴∠OBA=∠OAC=90°,
∴∠OBP+∠ABP=90°,∠ACP+∠APC=90°,
∵OP=OB,
∴∠OBP=∠OPB,
∵∠OPB=∠APC,
∴∠ACP=∠ABC,
∴AB=AC;
(2)延长AP交⊙O于D,连接BD,
设圆半径为r,则OP=OB=r,PA=5-r,
则AB2=OA2-OB2=52-r2,
AC2=PC2-PA2=(2
)2-(5-r)2,
∴52-r2=(2
)2-(5-r)2,
解得:r=3,
∴AB=AC=4,
∵PD是直径,
∴∠PBD=90°=∠PAC,
又∵∠DPB=∠CPA,
∴△DPB∽△CPA,
∴
=
,
∴
=
,
解得:PB=
.
∴⊙O的半径为3,线段PB的长为
;
(3)作出线段AC的垂直平分线MN,作OE⊥MN,则可以推出OE=
AC=
AB=

连接OB.
∵AB切⊙O于B,OA⊥AC,
∴∠OBA=∠OAC=90°,
∴∠OBP+∠ABP=90°,∠ACP+∠APC=90°,
∵OP=OB,
∴∠OBP=∠OPB,
∵∠OPB=∠APC,
∴∠ACP=∠ABC,
∴AB=AC;
(2)延长AP交⊙O于D,连接BD,
设圆半径为r,则OP=OB=r,PA=5-r,
则AB2=OA2-OB2=52-r2,
AC2=PC2-PA2=(2
| 5 |
∴52-r2=(2
| 5 |
解得:r=3,
∴AB=AC=4,
∵PD是直径,
∴∠PBD=90°=∠PAC,

又∵∠DPB=∠CPA,
∴△DPB∽△CPA,
∴
| CP |
| PD |
| AP |
| BP |
∴
2
| ||
| 3+3 |
| 5−3 |
| BP |
解得:PB=
6
| ||
| 5 |
∴⊙O的半径为3,线段PB的长为
6
| ||
| 5 |
(3)作出线段AC的垂直平分线MN,作OE⊥MN,则可以推出OE=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
看了 (2012•泰州)如图,已知...的网友还看了以下:
有这样一道习题:如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重 2020-04-27 …
如图,P是⊙O的半径OA上的一点,D在⊙O上,且PD=PO.过点D作⊙O的切线交OA的延长线于点C 2020-05-19 …
如图,P是⊙O的半径OA上的一点,D在⊙O上,且PD=PO.过点D作⊙O的切线交OA的延长线于点C 2020-06-04 …
如图,AB是⊙O的直径,AB=4,过点B作⊙O的切线,C是切线上一点,且BC=2,P是线段OA上一 2020-06-17 …
(2013•香坊区二模)如图,BD是⊙O的直径,OA⊥OB,M是劣弧AB上的一点,过点M作⊙O的切 2020-07-15 …
如图,△OAC中,以O为圆心,OA为半径作⊙O,作OB⊥OC交⊙O于B,垂足为O,连接AB交OC于 2020-07-24 …
如图,已知直线l与O相离,OA⊥l于点A,OA=10,OA与O相交于点P,AB与O相切于点B,BP 2020-07-31 …
(2004•宿迁)如图,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点,BP的延长线交⊙O 2020-11-12 …
如图,在O中,半径OA⊥OB,过点OA的中点C作FD∥OB交O于D、F两点,且CD=3,以O为圆心, 2020-11-26 …
如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,点B是⊙O上一点,连接BP并延长,交直线l 2021-01-02 …