早教吧 育儿知识 作业答案 考试题库 百科 知识分享

问题提出把多边形的任一边向两方延长,如果其它各边都在延长线的同一旁,则这样的多边形为凸多边形.如平行四边形、梯形等都是凸多边形.我们教材中所说的多边形如没作特别说明,

题目详情
问题提出
把多边形的任一边向两方延长,如果其它各边都在延长线的同一旁,则这样的多边形为凸多边形.如平行四边形、梯形等都是凸多边形.我们教材中所说的多边形如没作特别说明,一般都是指凸多边形.
把多边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的多边形叫做凹多边形.凹多边形会有哪些性质呢?
初步认识
如图(1),四边形ABCD中,延长BC到M,则边AB、CD分别在直线BM的两旁,所以四边形ABCD就是一个凹四边形.请你画一个凹五边形.(不要说明)
性质探究
请你完成凹四边形一个性质的证明:
如图(2),在凹四边形ABCD中,求证:∠BCD=∠A+∠B+∠D.
类比学习
我们以前曾研究过凸四边形的中点四边形问题,如图(3),在四边形ABCD中,E、F、G、H分别是边AB、BC、CD、DA的中点,则四边形EFGH是平行四边形.当四边形ABCD满足一定条件时,四边形EFGH还可能是矩形、菱形或正方形.
如图(4),在凹四边形ABCD中,AB=AD,CB=CD,E、F、G、H分别是边AB、BC、CD、DA的中点,请判断四边形EFGH的形状,并证明你的结论.
拓展延伸
如图(5),在凹四边形ABCD的边上求作一点P,使得∠BPD=∠A+∠B+∠D.(不写作法、证明,保留作图痕迹)
作业帮
▼优质解答
答案和解析
初步认识:如图1,作业帮

性质探究:
延长BC交AD于点M,作业帮
∵∠BCD是△CDE的外角,
∴∠BCD=∠CMD+∠D,
同理,∠CED是△ABE的外角,
∴∠CMD=∠A+∠B,
∴∠BCD=∠A+∠B+∠D;


类比学习:作业帮
四边形EFGH是矩形,
证明:连接AC,BD,交EH于点M,
∵E、F、G、H分别是边AB、BC、CD、DA的中点,
∴EF=HG=
1
2
AC,EF∥HG∥AC,
∴四边形EFGH是平行四边形,
∵AB=AD,BC=DC,
∴A、C在BD的垂直平分线上,
∴AM⊥EH,
已证EF∥AC,同理可证FG∥BD,
∴∠EFG=90°,
∴□EFGH是矩形;

拓展延伸:
如图所示,作业帮