早教吧作业答案频道 -->其他-->
有关二元函数极限的疑惑书上说二元函数极限必须是以任何方式接近都是同一个极限值,那么二元函数在这个点才有极限值。举个例子f(x,y)=xy^2/(x^2+y^4)在(0,0)处的极限.我设y=kx(所有的直
题目详情
有关二元函数极限的疑惑
书上说二元函数极限必须是以任何方式接近都是同一个极限值,那么二元函数在这个点才有极限值。举个例子f(x,y)=xy^2/(x^2+y^4)在(0,0)处的极限.我设y=kx(所有的直线方式趋近),极限为0,我设y=x^k(以这条曲线接近(0,0)点),算出的极限不为0,根据书上所讲,这个函数在(0,0)点无极限,我疑惑的正是这一点,前面我们知道所有直线方式趋近都有极限0,而以曲线趋近时,那条曲线上的点都可以找到那些直线上的点一一对应,为什么最后他的极限不为0,难道曲线上有点是无法在直线上找到的吗?,我知道自己说的都是感觉,肯定是错的(因为确实按曲线算极限不为0),谁能告诉我我错在哪里,谢谢,期待高手解答。
书上说二元函数极限必须是以任何方式接近都是同一个极限值,那么二元函数在这个点才有极限值。举个例子f(x,y)=xy^2/(x^2+y^4)在(0,0)处的极限.我设y=kx(所有的直线方式趋近),极限为0,我设y=x^k(以这条曲线接近(0,0)点),算出的极限不为0,根据书上所讲,这个函数在(0,0)点无极限,我疑惑的正是这一点,前面我们知道所有直线方式趋近都有极限0,而以曲线趋近时,那条曲线上的点都可以找到那些直线上的点一一对应,为什么最后他的极限不为0,难道曲线上有点是无法在直线上找到的吗?,我知道自己说的都是感觉,肯定是错的(因为确实按曲线算极限不为0),谁能告诉我我错在哪里,谢谢,期待高手解答。
▼优质解答
答案和解析
你提了很好的问题。现在我们可以再分析一下这道题。
设y=x²,则f(x,y)=x³/(x²+x^8)。
由于当x→0时,x^8相对于x²是高阶无穷小,可忽略。则有:
f(x,y)=x³/x²=x=0
再设y=x^(¼),则f(x,y)=x^(3/2)/(x²+x)。
当x→0时,x²相对于x是高阶无穷小,可忽略。则有
f(x,y)=x^(3/2)/x=x^(1/2)=0
在以上两种情况下,f(x,y)的极限为0。
可是若设y=x^(0.5)或y=√x,则
f(x,y)=x²/(x²+x²)=1/2。
此时x→0时,f(x,y)是一个常数。
你的问题是:“那条曲线上的点都可以找到那些直线上的点一一对应,为什么最后他的极限不为0,难道曲线上有点是无法在直线上找到的吗?”
现在我们看看什么直线(y=kx)与这条曲线(y=√x)在趋近0时是一致的。显然,这条直线必须是此曲线在x=0时的切线。
由于曲线y=√x的一阶导数是:
y′=1/(2√x)
所以此曲线在x=0处切线的斜率是无穷大(k=∞)。由于(k=∞),除x=0外,任何一个非0的x值都会使y值无穷大。这样,除x=0外,曲线y=√x上的点确实无法在此直线上找到一个对应的近似值。这样你的问题所得到的回答是肯定的。
设y=x²,则f(x,y)=x³/(x²+x^8)。
由于当x→0时,x^8相对于x²是高阶无穷小,可忽略。则有:
f(x,y)=x³/x²=x=0
再设y=x^(¼),则f(x,y)=x^(3/2)/(x²+x)。
当x→0时,x²相对于x是高阶无穷小,可忽略。则有
f(x,y)=x^(3/2)/x=x^(1/2)=0
在以上两种情况下,f(x,y)的极限为0。
可是若设y=x^(0.5)或y=√x,则
f(x,y)=x²/(x²+x²)=1/2。
此时x→0时,f(x,y)是一个常数。
你的问题是:“那条曲线上的点都可以找到那些直线上的点一一对应,为什么最后他的极限不为0,难道曲线上有点是无法在直线上找到的吗?”
现在我们看看什么直线(y=kx)与这条曲线(y=√x)在趋近0时是一致的。显然,这条直线必须是此曲线在x=0时的切线。
由于曲线y=√x的一阶导数是:
y′=1/(2√x)
所以此曲线在x=0处切线的斜率是无穷大(k=∞)。由于(k=∞),除x=0外,任何一个非0的x值都会使y值无穷大。这样,除x=0外,曲线y=√x上的点确实无法在此直线上找到一个对应的近似值。这样你的问题所得到的回答是肯定的。
看了 有关二元函数极限的疑惑书上说...的网友还看了以下:
设f(x)=1/x,若f(x)+f(y)=f(z).求z..请问,这个答案中直接就写出了,f(y)= 2020-03-30 …
单元音的问题[ɔ:]这个元音是不是[ɒ]这个元音的延长时间的读法?同理[3:](这里是那个音素的写 2020-05-14 …
【命名】一个化学元素被发现前,在中国字典里是否有这个元素的名称?是元素挑名字,还是发现新元素再造新 2020-05-17 …
离散数学证明题设置代数系统这里*是定义A上的二元运算.A中存在么元e.而且每个元素都有左逆元.如果 2020-07-25 …
判断点在直线上下方,好久没做这个有点忘了.如果一条直线假设是x-y+1=0,那么算的时候是不是把点代 2020-11-04 …
从营养学上讲,判断一种元素是否是人体必需的微量元素,不是根据这个元素是否出现在人体组分中,而是要看这 2020-11-14 …
闭音节:old算不算闭音节,是只有一个元音字母,但我想问问,理不理这个元音字母是单元音还是双元音?闭 2020-11-21 …
用直流电压表测量某元件两端的电压时,应与这个元件并联.用直流电流表测量某元件两端的电流时,应于这个元 2020-11-28 …
l这个音读类似于勒在元音后面读类似于耳.那这个元音指的是长元音,还是长+短元音啊 2020-12-04 …
高一数学已知映射f:A→B中,A=B{x,y)丨x∈R,y∈R}f:中的元素(x,y)对应到B中的元 2020-12-09 …