早教吧作业答案频道 -->数学-->
已知[x+(√y^2+1)][y+(√x^2+1)]=1,求证:x+y=0(x+根号下y方+1)乘以(y+根号下x方+1)
题目详情
已知[x+(√y^2+1)][y+(√x^2+1)]=1,求证:x+y=0
(x+根号下y方+1)乘以(y+根号下x方+1)
(x+根号下y方+1)乘以(y+根号下x方+1)
▼优质解答
答案和解析
[x+√(x^2+1)]*[y+√(y^2+1)]=1
左边式子上下同乘以√(y^2+1)-y得到:
(x+√(x^2+1))/(√(y^2+1)-y)=1
x+√(x^2+1)=√(y^2+1)-y
等式移下项:
x+y=√(y^2+1)-√(x^2+1)
左右平方:
x^2+2xy+y^2=y^2+1+x^2+1-2√(x^2+1)*√(y^2+1)
2(1-xy)=2√(x^2+1)*√(y^2+1)
左右再平方:
1-2xy+(xy)^2=(xy)^2+x^2+y^2+1
x^2+y^2+2xy=0
(x+y)^2=0
因此x+y=0
左边式子上下同乘以√(y^2+1)-y得到:
(x+√(x^2+1))/(√(y^2+1)-y)=1
x+√(x^2+1)=√(y^2+1)-y
等式移下项:
x+y=√(y^2+1)-√(x^2+1)
左右平方:
x^2+2xy+y^2=y^2+1+x^2+1-2√(x^2+1)*√(y^2+1)
2(1-xy)=2√(x^2+1)*√(y^2+1)
左右再平方:
1-2xy+(xy)^2=(xy)^2+x^2+y^2+1
x^2+y^2+2xy=0
(x+y)^2=0
因此x+y=0
看了 已知[x+(√y^2+1)]...的网友还看了以下:
X、Y、Z三种常见的短周期元素,可以形成XY2、Z2Y、XY3、Z2Y2、Z2X等化合物.已知Y的 2020-04-08 …
1:若x、y都是奇数,则x+y是偶数.其命题的否定为什么不是“若x、y都1:若x、y都是奇数,则x 2020-04-09 …
x+y<0,xy<0,x>y,则有()A.x>0,y<0,x绝对值较大B.x>0,y<0,y绝对值 2020-05-17 …
协方差cov(X+20,Y+10)=cov(X,知道了COV(X+a,Y+b)=E[(X+a)(Y 2020-06-17 …
设函数u(x,y)在有界闭区域D上连续,在D的内部具有2阶连续偏导数,且满足∂2u∂x∂y≠0及∂ 2020-06-23 …
解二元二次方程:1、x-15=y+6 2、y+5)*y=(y+2)*(y+2) 求教我解二元二次方 2020-06-27 …
你的在等式y=kx+b中,当x=0时,y=1;当x=4时,y=3,那么k=,b=.那个人做错了你还 2020-07-25 …
若正数x,y满足log3(x+y)=1,求log1/3(1/X+9/y)的最大值.这道题为什么若正 2020-07-30 …
一道对我来说爆脑的化学题:有X、Y、Z、Q、W,五种含氮化合物,有如下条件:1、X-->W+O22、 2020-10-31 …
d/dx×(y/x)与f'(y/x)有什么区别呢?这个问题想了好久也搞不懂,做题的时候看答案:d/d 2020-11-04 …