早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,矩形ABCD中,AB=2,E、F分别为AD、CD的中点,沿BE将△ABE折叠,若点A恰好落在BF上,则AD=2222.

题目详情
如图,矩形ABCD中,AB=2,E、F分别为AD、CD的中点,沿BE将△ABE折叠,若点A恰好落在BF上,则AD=
2
2
2
2
▼优质解答
答案和解析
连接EF,
∵点E、点F是AD、DC的中点,
∴AE=ED,CF=DF=
1
2
CD=
1
2
AB=1,
由折叠的性质可得AE=A′E,
∴A′E=DE,
在Rt△EA′F和Rt△EDF中,
EA′=ED
EF=EF

∴Rt△EA′F≌Rt△EDF(HL),
∴A′F=DF=1,
∴BF=BA′+A′F=AB+DF=2+1=3,
在Rt△BCF中,
BC=
BF2−CF2
=
8
=2
2

∴AD=BC=2
2

故答案为:2
2