早教吧作业答案频道 -->数学-->
一道高二数学题设函数f(x)=e^x+ax^2-ex,若曲线上存在唯一的一点Q,使得在Q点的切线与曲线只有一个公共点Q,试求实数a的取值范围.题目有点难度,望高手详细解答.尽量用常规思路,答的好加分.
题目详情
一道高二数学题
设函数f(x)=e^x+ax^2-ex,若曲线上存在唯一的一点Q,使得在Q点的切线与曲线只有一个公共点Q,试求实数a的取值范围.
题目有点难度,望高手详细解答.尽量用常规思路,答的好加分.
设函数f(x)=e^x+ax^2-ex,若曲线上存在唯一的一点Q,使得在Q点的切线与曲线只有一个公共点Q,试求实数a的取值范围.
题目有点难度,望高手详细解答.尽量用常规思路,答的好加分.
▼优质解答
答案和解析
设点Q(x0,f(x0)),曲线y=f(x)在点Q处的切线方程为y=f′(x0)(x-x0)+f(x0),令g(x)=f(x)-f′(x0)(x-x0)-f(x0),故曲线y=f(x)在点Q处的切线与曲线只有一个公共点 Q等价于函数g(x)有唯一零点. 因为g(x0)=0,且g′(x)=f′(x)-f′(x0)=ex-ex0+2a(x-x0). (1)若a≥0,当x>x0时,g′(x)>0,则x>x0时,g(x)>g(x0)=0; 当x<x0时,g′(x)<0,则x<x0时,g(x)>g(x0)=0. 故g(x)只有唯一零点x=x0. 由Q的任意性,a≥0不合题意.(2)若a<0,令h(x)=ex-ex0+2a(x-x0),则h(x0)=0,h′(x)=ex+2a. 令h′(x)=0,得x=ln(-2a),记x′=ln(-2a),则当x∈(-∞,x*)时,h′(x)<0,从而h(x) 在(-∞,x*)内单调递减;当x∈(x*,+∞)时,h′(x)>0,从而h(x)在(x*,+∞)内单调递增. ①若x0=x*,由x∈(-∞,x*)时,g′(x)=h(x)>h(x*)=0;x∈(x*,+∞)时,g′(x)=h(x) >h(x*)=0,知g(x)在R上单调递增. 所以函数g(x)在R上有且只有一个零点x=x*. ②若x0>x*,由于h(x)在(x*,+∞)内单调递增,且h(x0)=0,则当x∈(x*,x0)时有g′(x) =h(x)<h(x0)=0,g(x)>g(x0)=0;任取x1∈(x*,x0)有g(x1)>0. 又当x∈(-∞,x1)时,易知g(x)=ex+ax2-[e+f′(x0)]x-f(x0)+x0f′(x0)<ex1+ax2-[e +f′(x0)]x-f(x0)+x0f′(x0)=ax2+bx+c,其中b=-[e+f′(x0)] ,c=ex1-f(x0)+x0f′(x0). 由于a<0,则必存在x2<x1,使得ax22+bx2+c<0. 所以g(x2)<0.故g(x)在(x2,x1)内存在零点,即g(x)在R上至少有两个零点. ③若x0<x* ,仿②并利用3 e6 x x ,可证函数g(x)在R上至少有两个零点. 综上所述,当a<0时,曲线y=f(x)上存在唯一点P(ln(-2a),f(ln(-2a))),曲线在该点 处的切线与曲线只有一个公共点Q
看了 一道高二数学题设函数f(x)...的网友还看了以下:
一道数学题,如图,已知平行四边形ABCD中,对角线AC、BD分别交于点O,过O点的直线E、F,与A 2020-04-06 …
设函数f(x)=ax+b/x,曲线y=f(x)在点M(√3,f(√3))设函数f(x)=ax+b/ 2020-04-26 …
过抛物线焦点F的直线与抛物线交于A,B两点,若A,B在抛物线准线上的射影分别为E,G则角EFG为? 2020-05-13 …
(2014•东营)探究发现如图1,△ABC是等边三角形,∠AEF=60°,EF交等边三角形外角平分 2020-07-09 …
抛物线的焦点和准线是唯一的吗?我的意思是,一条抛物线的焦点是不是只有一个,它的准线呢?什么是抛物线 2020-07-31 …
高等数学的线微分和面微分L是闭曲线,函数f(x,y)在L上对弧长的曲线积分为∮f(x,y)ds那么 2020-07-31 …
水平渐近线的问题水平渐近线的定义是若limx->无穷大f(x)=A,称y=A为f(x)的水平渐近线 2020-08-01 …
如图1,E是正方形ABCD的边AB上的一点,过点E作DE的垂线交∠ABC的外角平分线于点F,求证: 2020-08-03 …
高二数学---圆锥曲线已知抛物线x^2=2py(p>0)的焦点F恰好是双曲线y^2/a^2-x^2/ 2020-11-18 …
设函数f(x)=ax-,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.(1 2020-11-28 …