早教吧作业答案频道 -->数学-->
如图,在△ABC中,AB=AC,点D在△ABC内,BD=BC,∠DBC=60°,点E在△ABC外,∠BCE=150°,∠ABE=60°.(1)求∠ADB的度数;(2)判断△ABE的形状并加以证明;(3)连接DE,若DE⊥BD,DE=8,求AD的长.
题目详情
如图,在△ABC中,AB=AC,点D在△ABC内,BD=BC,∠DBC=60°,点E在△ABC外,∠BCE=150°,∠ABE=60°.

(1)求∠ADB的度数;
(2)判断△ABE的形状并加以证明;
(3)连接DE,若DE⊥BD,DE=8,求AD的长.

(1)求∠ADB的度数;
(2)判断△ABE的形状并加以证明;
(3)连接DE,若DE⊥BD,DE=8,求AD的长.
▼优质解答
答案和解析
(1) ∵BD=BC,∠DBC=60°,
∴△DBC是等边三角形,
∴DB=DC,∠BDC=∠DBC=∠DCB=60°,
在△ADB和△ADC中,
,
∴△ADB≌△ADC,
∴∠ADB=∠ADC,
∴∠ADB=
(360°-60°)=150°.
(2) 结论:△ABE是等边三角形.
理由:∵∠ABE=∠DBC=60°,
∴∠ABD=∠CBE,
在△ABD和△EBC中,
,
∴△ABD≌△EBC,
∴AB=BE,∵∠ABE=60°,
∴△ABE是等边三角形.
(3) 连接DE.
∵∠BCE=150°,∠DCB=60°,
∴∠DCE=90°,
∵∠EDB=90°,∠BDC=60°,
∴∠EDC=30°,
∴EC=
DE=4,
∵△ABD≌△EBC,
∴AD=EC=4.
∴△DBC是等边三角形,
∴DB=DC,∠BDC=∠DBC=∠DCB=60°,
在△ADB和△ADC中,
|
∴△ADB≌△ADC,
∴∠ADB=∠ADC,
∴∠ADB=
1 |
2 |
(2) 结论:△ABE是等边三角形.
理由:∵∠ABE=∠DBC=60°,
∴∠ABD=∠CBE,
在△ABD和△EBC中,
|

∴△ABD≌△EBC,
∴AB=BE,∵∠ABE=60°,
∴△ABE是等边三角形.
(3) 连接DE.
∵∠BCE=150°,∠DCB=60°,
∴∠DCE=90°,
∵∠EDB=90°,∠BDC=60°,
∴∠EDC=30°,
∴EC=
1 |
2 |
∵△ABD≌△EBC,
∴AD=EC=4.
看了 如图,在△ABC中,AB=A...的网友还看了以下:
设f(x)在[a,b]上连续,在(a,b)内可导,且当x∈(a,b)时,f(x)≠0.若f(a)= 2020-05-14 …
设f(x0在[a,b]单调连续,(a,b)可导,a=f(a)<f(b)=b求证:存在ξi∈(a,b 2020-05-14 …
高数问题十分紧急设函数f(x)在(a,b)上可导连续,f(a)=0,a>0求证存在在ξ在高数问题十 2020-05-14 …
一道化学题!关于求相对分子质量的在A+B=C+2D的反应中,一直2.9gA跟4.9gB完全反应生成 2020-05-16 …
读我国某地等高线地形图回答问题图中河流的总体走向是怎样的在A-F六个字母表示的地点中,比较适宜修建 2020-05-17 …
函数的原函数除常数项之外是唯一确定的吗?对于给定的在[a,b]区间内连续的函数f(x),有无穷多个 2020-06-27 …
在a处有一生产电场的点电荷Q=8×10^(-8)C,离a点2cm处的b点有一点电荷q=1×10^( 2020-07-12 …
数学分析判断题设f(x)在[a,b]上连续,且在x1∈(a,b)处取得最小值,则存在a>0,使得数 2020-07-31 …
拉格朗日中值定理推广拉格朗日中值定理:若函数f(x)在区间[a,b]满足以下条件:(1)在[a,b] 2020-11-22 …
sinA和cosA的乘积的在A=45度时最大,是怎么推倒出来的? 2020-12-28 …