早教吧作业答案频道 -->数学-->
分部积分法求解∫x^3(lnx)dx上面少了点,补充下:∫x^3(lnx)^2dx
题目详情
分部积分法求解
∫x^3(lnx)dx
上面少了点,补充下:∫x^3(lnx)^2dx
∫x^3(lnx)dx
上面少了点,补充下:∫x^3(lnx)^2dx
▼优质解答
答案和解析
1.∫x^3(lnx)^2dx这是一个求幂函数x^3与对数函数(lnx)^2的乘积的不定积分,必须先将幂函数x^3凑微分,即将x^3移到微分号d后面,即x^3dx=d[(1/4)x^4],这里原式=∫(lnx)^2d[(1/4)x^4],
接着用公式∫udv=uv-∫vd u
于是,原式=(1/4)x^4(lnx)^2-∫(1/4)x^4d[lnx)^2]
=(1/4)x^4(lnx)^2-(1/4)∫x^4*2(lnx)*(1/x)dx
=(1/4)x^4(lnx)^2-(1/2)∫x^3*(lnx)dx
2.将∫x^3*(lnx)dx再用一次分部积分公式,即∫x^3*(lnx)dx=∫(lnx)d[(1/4)x^4]=[(1/4)x^4](lnx)-(1/4)∫x^4*(1/x)dx=[(1/4)x^4](lnx)-(1/4)∫x^3dx=[(1/4)x^4](lnx)-(1/16)x^4+C
3.将上述结果代回第一部分中,原式=(1/4)x^4(lnx)^2-(1/2)[(1/4)x^4](lnx)-(1/16)x^4]+C
=(1/4)x^4(lnx)^2-(1/8)[x^4](lnx)-(1/128)x^4]+C
接着用公式∫udv=uv-∫vd u
于是,原式=(1/4)x^4(lnx)^2-∫(1/4)x^4d[lnx)^2]
=(1/4)x^4(lnx)^2-(1/4)∫x^4*2(lnx)*(1/x)dx
=(1/4)x^4(lnx)^2-(1/2)∫x^3*(lnx)dx
2.将∫x^3*(lnx)dx再用一次分部积分公式,即∫x^3*(lnx)dx=∫(lnx)d[(1/4)x^4]=[(1/4)x^4](lnx)-(1/4)∫x^4*(1/x)dx=[(1/4)x^4](lnx)-(1/4)∫x^3dx=[(1/4)x^4](lnx)-(1/16)x^4+C
3.将上述结果代回第一部分中,原式=(1/4)x^4(lnx)^2-(1/2)[(1/4)x^4](lnx)-(1/16)x^4]+C
=(1/4)x^4(lnx)^2-(1/8)[x^4](lnx)-(1/128)x^4]+C
看了 分部积分法求解∫x^3(ln...的网友还看了以下:
-x(a-x)(x-b)-mn(a-x)(b-x)的公因式是什么.不.选择里没有A.x(a-x)B 2020-04-08 …
1.设P={x|x<1},Q={x|x2<4},则P∩Q()A.{x|-1<x<2}B.{x1.设 2020-06-05 …
导数相关的题.1.当K取何值时,分段函数:x不等于0时,f(x)=x的k次方乘以sin(1/x), 2020-06-11 …
求函数的驻点f'x(x,y)=2xy(4-x-y)-x^2y=0.(1)其中f'x(x,y)中左边 2020-07-11 …
F(x)=x(e^x-1)-ax^2,若当x≥0时f(x)≥0,求a的取值范围?f(xF(x)=x 2020-07-26 …
1.集合M={x|x^2>4},P={x|2/{x-1}≥0,则集合P除集合M的集合N{}A:{x 2020-07-30 …
1.已知集合U={x|x大于等于2},集合A={y|3小于等于y小于4},集合B={z|2小于等于 2020-08-02 …
计算机组成原理的作业,十万火急,明天下午要交的!1、已知:x=0.1011,y=-0.0101,求 2020-08-03 …
急微分函数f(x)=|x-1|()A在点x=1处连续可导B在点x=1处不连续C在点x=0处连续可导D 2020-12-12 …
①全集U={x|x≤5}集合A={x|-2<x<2}B={x|-3<x≤3}求补集U(A∩B)?②全 2021-02-05 …