早教吧作业答案频道 -->数学-->
如图,在平面直角坐标系中,正方形OABC的边长为a.直线y=bx+c交x轴于E,交y轴于F,且a、b、c分别满足-(a-4)2≥0,c=b−2+2−b+8(1)求直线y=bx+c的解析式并直接写出正方形OABC的对角线的交点D
题目详情
如图,在平面直角坐标系中,正方形OABC的边长为a.直线y=bx+c交x轴于E,交y轴于F,且a、b、c分别满足-(a-4)2≥0,c=
+
+8
(1)求直线y=bx+c的解析式并直接写出正方形OABC的对角线的交点D的坐标;
(2)直线y=bx+c沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由;
(3)点P为正方形OABC的对角线AC上的动点(端点A、C除外),PM⊥PO,交直线AB于M,求
的值.

b−2 |
2−b |
(1)求直线y=bx+c的解析式并直接写出正方形OABC的对角线的交点D的坐标;
(2)直线y=bx+c沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由;
(3)点P为正方形OABC的对角线AC上的动点(端点A、C除外),PM⊥PO,交直线AB于M,求
PC |
BM |

▼优质解答
答案和解析
(1)∵-(a-4)2≥0,c=
+
+8,
∴a=4,b=2,c=8,
∴直线y=bx+c的解析式为:y=2x+8,
∵正方形OABC的对角线的交点D,且正方形边长为4,
∴D(2,2);
(2)存在,
理由为:
对于直线y=2x+8,
当y=0时,x=-4,
∴E点的坐标为(-4,0),
根据题意得:当直线EF平移到过D点时正好平分正方形AOBC的面积,
设平移后的直线为y=2x+t,
代入D点坐标(2,2),
得:2=4+t,即t=-2,
∴平移后的直线方程为y=2x-2,
令y=0,得到x=1,
∴此时直线和x轴的交点坐标为(1,0),平移的距离为1-(-4)=5,
则t=5秒;
(3)过P点作PQ∥OA,PH∥CO,交CO、AB于N、Q,交CB、OA于G、H,
∵∠OPM=∠HPQ=90°,
∴∠OPH+∠HPM=90°,∠HPM+∠MPQ=90°,
∴∠OPH=∠MPQ,
∵AC为∠BAO平分线,且PH⊥OA,PQ⊥AB,
∴PH=PQ,
在△OPH和△MPQ中,
,
∴△OPH≌△MPQ(AAS),
∴OH=QM,
∵四边形CNPG为正方形,
∴PG=BQ=CN,
∴CP=
PG=
BM,
即
=

b−2 |
2−b |
∴a=4,b=2,c=8,
∴直线y=bx+c的解析式为:y=2x+8,
∵正方形OABC的对角线的交点D,且正方形边长为4,
∴D(2,2);
(2)存在,
理由为:
对于直线y=2x+8,
当y=0时,x=-4,
∴E点的坐标为(-4,0),
根据题意得:当直线EF平移到过D点时正好平分正方形AOBC的面积,
设平移后的直线为y=2x+t,
代入D点坐标(2,2),
得:2=4+t,即t=-2,
∴平移后的直线方程为y=2x-2,
令y=0,得到x=1,
∴此时直线和x轴的交点坐标为(1,0),平移的距离为1-(-4)=5,
则t=5秒;
(3)过P点作PQ∥OA,PH∥CO,交CO、AB于N、Q,交CB、OA于G、H,
∵∠OPM=∠HPQ=90°,
∴∠OPH+∠HPM=90°,∠HPM+∠MPQ=90°,
∴∠OPH=∠MPQ,
∵AC为∠BAO平分线,且PH⊥OA,PQ⊥AB,
∴PH=PQ,
在△OPH和△MPQ中,
|
∴△OPH≌△MPQ(AAS),
∴OH=QM,
∵四边形CNPG为正方形,
∴PG=BQ=CN,
∴CP=
2 |
| ||
2 |
即
PC |
BM |
|
看了 如图,在平面直角坐标系中,正...的网友还看了以下:
反比函数题已知反比函数y=8/x上有2点A(2.4)B(4,2),做AC垂直于X轴,BD垂直于x轴, 2020-03-31 …
关于直线倾斜角的问题,参考书上的一段话没看明白,直线情况平行于x轴由左向右上升垂直于x轴由右向左上 2020-04-11 …
在平面直角坐标系中,已知焦距为4的椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的右焦点 2020-05-15 …
已知反比例函数y=k/x的图象经A(-根号3,m)过点A作AB垂直于X轴于点B且三角形的面积为根号 2020-05-15 …
如图①,抛物线y=ax2+bx的对称轴为直线x=-3/2,且抛物线经过点A(-4,2),AB平行于 2020-05-15 …
关于原点对称的俩个点的连线A.必垂直于x轴 B必垂直于y轴 C必经过原点 D 必在象限角的关于原点 2020-05-16 …
在直角坐标系中,一次函数y=x+m与反比例函数y=m/x在第一象限交于点A,与x轴交于点C,AB垂 2020-05-22 …
在直角坐标系中,一次函数y=x+m与反比例函数y=m/x在第一象限交与A在直角坐标系中,一次函数y 2020-05-22 …
在直角坐标系中,一次函数y=x+m与反比例函数y=m/x在第一象限交于点A,与x轴交于点C,AB垂 2020-05-22 …
在平面直角坐标系中,直线L1:y=2x+b交x轴正半轴于点A,点B(4,0)在点A的右边,现过点B 2020-06-14 …