早教吧作业答案频道 -->数学-->
在△ABC中,已知(a+b+c)(a+b-c)=3ab,且2cosAsinB=sinC,试确定△ABC的形状.
题目详情
在△ABC中,已知(a+b+c)(a+b-c)=3ab,且2cosAsinB=sinC,试确定△ABC的形状.
▼优质解答
答案和解析
由三角形的内角和公式可得,2cosAsinB=sinC=sin(A+B)
∴2cosAsinB=sinAcosB+sinBcosA
∴sinAcosB-sinBcosA=0,
∴sin(A-B)=0,∴A=B
∵(a+b+c)(a+b-c)=3ab
∴(a+b)2-c2=3ab
即a2+b2-c2=ab
由余弦定理可得cosC=
=
∵0<C<π,∴C=
,∴A=B=C=
故△ABC为等边三角形
∴2cosAsinB=sinAcosB+sinBcosA
∴sinAcosB-sinBcosA=0,
∴sin(A-B)=0,∴A=B
∵(a+b+c)(a+b-c)=3ab
∴(a+b)2-c2=3ab
即a2+b2-c2=ab
由余弦定理可得cosC=
a2+b2−c2 |
2ab |
1 |
2 |
∵0<C<π,∴C=
π |
3 |
π |
3 |
故△ABC为等边三角形
看了 在△ABC中,已知(a+b+...的网友还看了以下:
若a+b=b+c,则a-b(c为整式)若a=b,则ac=bc(c为整式)若ac=bc,则a=b(c 2020-04-22 …
分解因式(a-b-c)(a+b-c)-(b-c-a)(b+c-a)正确答案是这个:(a+b-c)( 2020-05-17 …
求教分析一道代数式值题的解答过程.题目是这样的:已知(b+c)/a=(a+c)/b=(a+b)/c 2020-05-20 …
有难度M{A,B,C}==(A+B+C)/3m{A,B,C}=A(A为三数中最小的一个)则若M{A 2020-06-13 …
a(b-c)^5+b(c-a)^5+c(a-b)^5分解为(a-b)(b-c)(c-a)L(aa( 2020-07-09 …
求证:A∩(B∪C)=(A∪B)∩(A∪C)(1)假设x∈A∩(B∪C),则x∈A且x∈B∪C,所 2020-07-20 …
已知A.B.C是平面内的三点,AB=3,BC=3,AC=6,下列说法中,正确的是.()A.可以画一 2020-07-21 …
设a,b,c都是正数且a+b+c=1,求证:(1+a)(1+b)(1+c)≥8(1-a)(1-b) 2020-07-25 …
如果a/1=b*0.8=c/0.8,(a\b\c不为0)那么a\b\c的大小关系正确的是()A.a> 2020-11-01 …
有三个数a,b,c,其中满足a+b>c,b+c>a,a+c>b,结果是有三个数a,b,c,其中满足a 2020-11-01 …