早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知半径为1cm的圆,在下面三个图中AC=10cm,AB=6cm,BC=8cm,在图2中∠ABC=90°.(l)如图1,若将圆心由点A沿A→C方向运动到点C,求圆扫过的区域面积;(2)如图2,若将圆心由点A沿A→B→C方向

题目详情
已知半径为1cm的圆,在下面三个图中AC=10cm,AB=6cm,BC=8cm,在图2中∠ABC=90°.
(l)如图1,若将圆心由点A沿A→C方向运动到点C,求圆扫过的区域面积;
(2)如图2,若将圆心由点A沿A→B→C方向运动到点C,求圆扫过的区域面积;
(3)如图3,若将圆心由点A沿A→B→C→A方向运动回到点A.
则:I)阴影部分面积为______;Ⅱ)圆扫过的区域面积为______.
▼优质解答
答案和解析
(1)

由题意得,圆扫过的面积=DE×AC+πr2=(20+π)cm2
(2)

圆扫过的区域面积=圆经过AB扫过的面积+经过BC扫过的面积-图2中红线围成区域的面积(即是
3
4
个圆的面积+一个边长为r的正方形的面积),
结合(1)的求解方法,可得所求面积=(2r×AB+πr2)+(2r×BC+πr2)-(
3
4
πr2+r2)=2r(AB+BC)+
5
4
πr2-1=(27+
5
4
π)cm2
(3)根据题意补充图形如下所示,

连接MH,AG和AD;连接ON、CP和CF,
∵AG⊥GD,AH⊥DH,AG=AH=1cm,
∴DA为∠GDH的角平分线(角平分线性质定理的逆定理),
∴∠ADG=∠ADH=
1
2
∠GDH=
1
2
∠EDF,
∵sin∠EDF=sin∠BAC=
4
5
,cos∠EDF=cos∠BAC=
3
5

∴tan∠ADG=
AG
GD
=tan
1
2
∠EDF=
sin∠EDF
1+cos∠EDF
=
4
5
1+
3
5
=
1
2

∴DG=DH=2cm,
同理可求出:FP=FO=3cm,
∴DE=AB-DH-r=6-2-1=3cm,EF=BC-FO-r=8-3-1=4cm,
故阴影部分的面积为:
1
2
×3×4=6cm2
而此时圆扫过的区域面积=题(2)中扫过的面积+圆经过CA扫过的面积-(图3中两个蓝线所画阴影部分的面积),
∵∠MAG+∠GAB=∠GAB+∠BAC=90°,
∴∠MAG=∠BAC,
同理可求出:∠PCN=∠BCA,
∴∠MAG+∠PCN=∠BAC+∠BCA=90°,
∴图3中两个蓝线所画阴影部分的面积=(△AGD+△AHD+△FPC+△FOC+
5
4
个圆)的面积=2×
1
2
×1×2+2×
1
2
×1×3+
5
4
•π•12=(5+
5
4
π)cm2
又圆经过CA扫过的面积=2r×AC+πr2=(20+π)cm2
∴圆扫过的区域面积=(27+
5
4
π)+(20+π)-(5+
5
4
π)=(42+π)cm2