早教吧作业答案频道 -->数学-->
已知:三角形ABC内接于⊙O,过点A作直线EF.(1)如图(1),AB为直径,要使得EF是⊙O的切线,只需保证∠CAE=∠,并证明之;(2)如图(2),AB为⊙O非直径的弦,(1)中你所添出的条
题目详情
已知:三角形ABC内接于⊙O,过点A作直线EF.

(1)如图(1),AB为直径,要使得EF是⊙O的切线,只需保证∠CAE=∠______,并证明之;
(2)如图(2),AB为⊙O非直径的弦,(1)中你所添出的条件仍成立的话,EF还是⊙O的切线吗?若是,写出证明过程;若不是,请说明理由并与同学交流.

(1)如图(1),AB为直径,要使得EF是⊙O的切线,只需保证∠CAE=∠______,并证明之;
(2)如图(2),AB为⊙O非直径的弦,(1)中你所添出的条件仍成立的话,EF还是⊙O的切线吗?若是,写出证明过程;若不是,请说明理由并与同学交流.
▼优质解答
答案和解析
(1)保证∠CAE=∠ABC;
证明:∵AB为⊙O直径,
∴∠ACB=90°.
∴∠BAC+∠ABC=90°.
若∠CAE=∠ABC.
∴∠BAC+∠CAE=90°,
即∠BAE=90°,OA⊥AE.
∴EF为⊙O的切线.
(2)EF还是⊙O的切线.
证明:连接AO并延长交⊙O于点D,连接CD,如图,
∴∠ADC=∠ABC.
∵AD为⊙O的直径,
∴∠DAC+∠ADC=90°.
∵∠CAE=∠ABC=∠ADC,
∴∠DAC+∠CAE=90°.
∴∠DAE=90°,
即OA⊥EF
所以EF为⊙O的切线.
证明:∵AB为⊙O直径,
∴∠ACB=90°.
∴∠BAC+∠ABC=90°.
若∠CAE=∠ABC.
∴∠BAC+∠CAE=90°,
即∠BAE=90°,OA⊥AE.
∴EF为⊙O的切线.
(2)EF还是⊙O的切线.

证明:连接AO并延长交⊙O于点D,连接CD,如图,
∴∠ADC=∠ABC.
∵AD为⊙O的直径,
∴∠DAC+∠ADC=90°.
∵∠CAE=∠ABC=∠ADC,
∴∠DAC+∠CAE=90°.
∴∠DAE=90°,
即OA⊥EF
所以EF为⊙O的切线.
看了 已知:三角形ABC内接于⊙O...的网友还看了以下:
如图所示,在正方形abcd中,P是对角线AB上的任意一点如图所示,在正方形ABCD中,P是对角线A 2020-04-26 …
4.如图,在边长为1正方形ABCD中,E、F、G分别是AB、BC、CD、DA上的点,3AE=EB, 2020-05-16 …
某同学用显微镜观察洋葱鳞片叶内表皮细胞时看到了如图所示几幅图象,这几幅图象在操作过程中出现的顺序依 2020-07-01 …
令文法G[E]为:E→T|E+T|E-TT→F|T*F|T/FF→(E)|i证明E+T*F是它的一 2020-07-08 …
如图所示,在两等量异种点电荷连线上有D、E、F三点,且DE=EF.K、M、L分别为过D、E、F三点 2020-07-09 …
在等边△ABC中,AB=2,点P为AB边上任一点,过点P作PE垂直BC于E,过E作EF垂直AC于F 2020-07-30 …
如图,在四边形ABCD对角线AC上任取一点F,过F作FE||CB交AB于E,过F作FG||CD交A 2020-08-02 …
已知:如图9,等边三角形ABC中,AB=2,点P是AB边上的任意一点(点P可以与点A重合,但不与点 2020-08-03 …
如图所示,已知A、E、F、C在同一直线上,AE=CF,过E、F分别作DE⊥AC于点E,BF⊥AC于点 2020-11-03 …
如图1所示,A、E、F、C在同一直线上,AF=CE,过E、F分别作DE⊥AC,BF⊥AC,若AB=C 2020-12-09 …