早教吧作业答案频道 -->数学-->
已知:三角形ABC内接于⊙O,过点A作直线EF.(1)如图(1),AB为直径,要使得EF是⊙O的切线,只需保证∠CAE=∠,并证明之;(2)如图(2),AB为⊙O非直径的弦,(1)中你所添出的条
题目详情
已知:三角形ABC内接于⊙O,过点A作直线EF.

(1)如图(1),AB为直径,要使得EF是⊙O的切线,只需保证∠CAE=∠______,并证明之;
(2)如图(2),AB为⊙O非直径的弦,(1)中你所添出的条件仍成立的话,EF还是⊙O的切线吗?若是,写出证明过程;若不是,请说明理由并与同学交流.

(1)如图(1),AB为直径,要使得EF是⊙O的切线,只需保证∠CAE=∠______,并证明之;
(2)如图(2),AB为⊙O非直径的弦,(1)中你所添出的条件仍成立的话,EF还是⊙O的切线吗?若是,写出证明过程;若不是,请说明理由并与同学交流.
▼优质解答
答案和解析
(1)保证∠CAE=∠ABC;
证明:∵AB为⊙O直径,
∴∠ACB=90°.
∴∠BAC+∠ABC=90°.
若∠CAE=∠ABC.
∴∠BAC+∠CAE=90°,
即∠BAE=90°,OA⊥AE.
∴EF为⊙O的切线.
(2)EF还是⊙O的切线.
证明:连接AO并延长交⊙O于点D,连接CD,如图,
∴∠ADC=∠ABC.
∵AD为⊙O的直径,
∴∠DAC+∠ADC=90°.
∵∠CAE=∠ABC=∠ADC,
∴∠DAC+∠CAE=90°.
∴∠DAE=90°,
即OA⊥EF
所以EF为⊙O的切线.
证明:∵AB为⊙O直径,
∴∠ACB=90°.
∴∠BAC+∠ABC=90°.
若∠CAE=∠ABC.
∴∠BAC+∠CAE=90°,
即∠BAE=90°,OA⊥AE.
∴EF为⊙O的切线.
(2)EF还是⊙O的切线.

证明:连接AO并延长交⊙O于点D,连接CD,如图,
∴∠ADC=∠ABC.
∵AD为⊙O的直径,
∴∠DAC+∠ADC=90°.
∵∠CAE=∠ABC=∠ADC,
∴∠DAC+∠CAE=90°.
∴∠DAE=90°,
即OA⊥EF
所以EF为⊙O的切线.
看了 已知:三角形ABC内接于⊙O...的网友还看了以下:
帆船A和帆船B在太湖湖面上训练,O为湖面上的一个定点,教练船静候在O点,训练时要求A、B两船始终关 2020-05-13 …
(2008•苏州)如图,帆船A和帆船B在太湖湖面上训练,O为湖面上的一个定点,教练船静候于点O,训 2020-05-16 …
长L等于0.4米,质量可忽略不计的杆,质量不计的杆下端固定点在O点,上端连接着球A下端固定于O点, 2020-06-06 …
对于点O、M,点M沿MO的方向运动到O左转弯继续运动到N,使OM=ON,且OM⊥ON,这一过程称为 2020-06-19 …
如图所示,真空中等量异种点电荷放置在M、N两点,O为MN连线中点,a、c关于O点对称,MN连线的中 2020-07-13 …
如图,帆船A和帆船B在太湖湖面上训练,O为湖面上的一个定点,教练船静候于O点,训练时要求A,B两船 2020-07-31 …
如图所示的圆形线圈共n匝,电阻为R,过线圈中心O垂直于线圈平面的直线上有A、B两点,A、B两点的距离 2020-11-01 …
1.如图所示,空气中有个带电小球A和B,A被长为的绝缘细线悬于固定点O,B被绝缘支架固定于O点的正下 2020-11-08 …
大家帮看看这一题,如图,帆船A和帆船B在太湖湖面上训练,O为湖面上的一个定点,教练船静候于O点.训练 2020-11-23 …
如图所示,质量为m,电量为q的小球B,用绝缘丝线悬挂于O点,球心与O点相距l.在O点正下方有一带同种 2020-12-05 …