早教吧作业答案频道 -->数学-->
如果一个数m可以表示为3x^2-8xy+6y^2(x,y是整数)的形式,则称m为好数1、你认为好数的特征是什么?判断34是否为好数?2、写出1,2,3,4,5,6,7,8,9,10中的好数3、如果n也是好数,那么mn是否为好数?为什么?
题目详情
如果一个数m可以表示为3x^2-8xy+6y^2(x,y是整数)的形式,则称m为好数
1、你认为好数的特征是什么?判断34是否为好数?
2、写出1,2,3,4,5,6,7,8,9,10中的好数
3、如果n也是好数,那么mn是否为好数?为什么?
1、你认为好数的特征是什么?判断34是否为好数?
2、写出1,2,3,4,5,6,7,8,9,10中的好数
3、如果n也是好数,那么mn是否为好数?为什么?
▼优质解答
答案和解析
1. 3x²-8xy+6y² = (x²-4xy+4y²)+2(x²-2xy+y²) = (x-2y)²+2(x-y)².
若m是好数, 则m具有u²+2v²的形式, 其中u, v为整数.
反之, 若m = u²+2v², 可取x = 2v-u, y = v-u, 则m = (x-2y)²+2(x-y)²为好数.
因此, 好数可以刻画为具有u²+2v²形式的数.
由34 = 4²+2·3², 可知34为好数.
2. 1 = 1²+2·0², 2 = 0²+2·1², 3 = 1²+2·1², 4 = 2²+2·0², 6 = 2²+2·1², 8 = 0²+2·2², 9 = 3²+2·0².
而不难枚举验证5, 7, 10都不具有u²+2v²形式.
因此1至10中的好数为1, 2, 3, 4, 6, 8, 9.
3. 若m, n均为好数, 可设m = u²+2v², n = s²+2t².
有mn = (u²+2v²)(s²+2t²) = (u²s²+4v²t²)+2(u²t²+v²s²)
= (u²s²+4usvt+4v²t²)+2(u²t²-2utvs+v²s²)
= (us+2vt)²+2(ut-vs)².
故mn也为好数.
注: 在代数数论中可以对具有u²+2v²形式的数得到更细致的刻画:
一个正整数m具有u²+2v²形式, 当且仅当m的8k+5与8k+7型的质因数的指数都是偶数.
若m是好数, 则m具有u²+2v²的形式, 其中u, v为整数.
反之, 若m = u²+2v², 可取x = 2v-u, y = v-u, 则m = (x-2y)²+2(x-y)²为好数.
因此, 好数可以刻画为具有u²+2v²形式的数.
由34 = 4²+2·3², 可知34为好数.
2. 1 = 1²+2·0², 2 = 0²+2·1², 3 = 1²+2·1², 4 = 2²+2·0², 6 = 2²+2·1², 8 = 0²+2·2², 9 = 3²+2·0².
而不难枚举验证5, 7, 10都不具有u²+2v²形式.
因此1至10中的好数为1, 2, 3, 4, 6, 8, 9.
3. 若m, n均为好数, 可设m = u²+2v², n = s²+2t².
有mn = (u²+2v²)(s²+2t²) = (u²s²+4v²t²)+2(u²t²+v²s²)
= (u²s²+4usvt+4v²t²)+2(u²t²-2utvs+v²s²)
= (us+2vt)²+2(ut-vs)².
故mn也为好数.
注: 在代数数论中可以对具有u²+2v²形式的数得到更细致的刻画:
一个正整数m具有u²+2v²形式, 当且仅当m的8k+5与8k+7型的质因数的指数都是偶数.
看了 如果一个数m可以表示为3x^...的网友还看了以下:
数列{an}前8项的值各异,且a(n+8)=an,对任意的n∈N*都成立,则数列中可取遍{an}的 2020-04-26 …
高一数学,关于对数的运算性质的,帮帮忙好不?高一数学,关于对数的运算性质的题目,想了半天都没想到, 2020-05-16 …
已知定义域为R的函数f(x)在区间(8,+∞)上为减函数,且函数y=f(x+8)为偶函数则()A. 2020-06-08 …
如果f(x+8)为偶函数,那么f(x+8)=?①如果f(x+8)为偶函数,那么f(x+8){是f( 2020-06-08 …
若f(x+8)为偶函数,为什么有f(x+8)=f(-x+8)网上都说定义来--,我预习,的确不好学 2020-06-08 …
12864显示图形如何写坐标按照指令我写Wcom(0x34)扩充指令开关闭图形RAMWcom(0x 2020-06-14 …
梅花易数如果除六为零……如刚才按时间起卦,上卦3+12+12/8为离卦.下卦3+12+12+9/8 2020-07-01 …
明明要给刚结识的朋友小林打电话,他只记住了电话号码(共8为数字)的前5位的顺序(1)如果后3位是3 2020-07-10 …
等差数列{an}的首相为a,公差为d;等差数列{bn}的首相为b,公差为e,如果cn=an+bn(n 2020-11-03 …
会做一题写一题,全会更好.在下面1.那些数是既是4的倍数,又是8的倍数?举两个例子2.6的因数有12 2020-12-13 …