早教吧作业答案频道 -->数学-->
如图,在△ABC中,∠ACB=90°,∠B=36°,以C为圆心,CA为半径的圆交AB于点D,交BC于点E.求AD、DE的度数.
题目详情
如图,在△ABC中,∠ACB=90°,∠B=36°,以C为圆心,CA为半径的圆交AB于点D,交BC于点E.求
、
的度数.

![]() |
AD |
![]() |
DE |

▼优质解答
答案和解析
连接CD,
∵△ABC是直角三角形,∠B=36°,
∴∠A=90°-36°=54°,
∵AC=DC,
∴∠ADC=∠A=54°,
∴∠ACD=180°-∠A-∠ADC=180°-54°-54°=72°,
∴∠BCD=∠ACB-∠ACD=90°-72°=18°,
∵∠ACD、∠BCD分别是
,
所对的圆心角,
∴
的度数为72°,
的度数为18°.

∵△ABC是直角三角形,∠B=36°,
∴∠A=90°-36°=54°,
∵AC=DC,
∴∠ADC=∠A=54°,
∴∠ACD=180°-∠A-∠ADC=180°-54°-54°=72°,
∴∠BCD=∠ACB-∠ACD=90°-72°=18°,
∵∠ACD、∠BCD分别是
![]() |
AD |
![]() |
DE |
∴
![]() |
AD |
![]() |
DE |
看了 如图,在△ABC中,∠ACB...的网友还看了以下:
分解因式a(a-b-c)+b(c-a+b)+c(b-a+c)的结果是()A.(b+c-a)2B.( 2020-04-08 …
如图所示,已知集合A、B、C为全集U的子集,则图中阴影部分所表示的集合为()A.(∁∪C)∪(A∪ 2020-05-02 …
能说明△ABC∽△A′B′C′的条件是()A.ABA′B′=ACA′C≠BCB′C′B.ABAC= 2020-05-13 …
一元酸HA溶液,加入一定量的强碱MOH后...某种一元酸(HA)溶液中加入一定量的一种强碱(MOH 2020-06-27 …
乘法结合律是()A.(a×b)×c=a×(b×c)B.(a+b)+c=a+(b+c)C.a×(b+ 2020-07-31 …
a、b、c表示三个数,则乘法结合律可以用()式子表示.A.(a+b)+c=a+(b+c)B.(a× 2020-07-31 …
已知有理数a、b.c在数轴上的位置如图所示.(1)判断下列各式的符号:a-b,b-c,c-a;(2) 2020-11-20 …
听力测试十(20分)I.听句子,选择正确的图画(5分)1.A.B.C.2.A.B.C.3.A.B.C 2020-12-09 …
已知变量a,b已被赋值,要交换a、b的值,应采用的算法是()A.a=b,b=aB.a=c,b=a,c 2020-12-31 …
已知变量a,b已被赋值,要交换a、b的值,应采用的算法是()A.a=b,b=aB.a=c,b=a,c 2020-12-31 …