早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图所示,已知在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,1)、B(3,1).动点P从O点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点作PQ垂直于直线OA,垂足为Q.设P点移动的

题目详情
如图所示,已知在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,1)、B(3,1).动点P从O点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点作PQ垂直于直线OA,垂足为Q.设P点移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.
(1)求经过O、A、B三点的抛物线解析式;
(2)求S与t的函数关系式;
(3)在运动过程中,是否存在某一时刻t,使得以C、P、Q为顶点的三角形与△OAB相似?若存在,求出t的值;若不存在,请说明理由.
(4)将△OPQ绕着点P顺时针旋转90°,是否存在t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.
▼优质解答
答案和解析
(1)设抛物线解析式为y=ax2+bx(a≠0),将A.B点坐标代入得出:
1=a+b
1=9a+3b

解得:
a=−
1
3
b=
4
3

故经过O、A、B三点的抛物线解析式为:y=-
1
3
x2+
4
3
x.

(2)①当0<t≤2时,重叠部分为△OPQ,过点A作AD⊥x轴于点D,
如图1.
在Rt△AOD中,AD=OD=1,∠AOD=45°.
在Rt△OPQ中,OP=t,∠OPQ=∠QOP=45°.
∴OQ=PQ=
2
2
t.
∴S=S△OPQ=
1
2
OQ•PQ=
1
2
×
2
2
2
2
t=
1
4
t2(0<t≤2);
②当2<t≤3时,设PQ交AB于点E,重叠部分为梯形AOPE,
作EF⊥x轴于点F,如图2.∵∠OPQ=∠QOP=45°
∴四边形AOPE是等腰梯形∴AE=DF=t-2.
∴S=S梯形AOPE=
1
2
(AE+OP)•AD=
1
2
(t-2+t)×1
=t-1(2<t≤3);
③当3<t<4时,设PQ交AB于点E,交BC于点F,
重叠部分为五边形AOCFE,如图3.
∵B(3,1),OP=t,∴PC=CF=t-3.
∵△PFC和△BEF都是等腰直角三角形
∴BE=BF=1-(t-3)=4-t
∴S=S五边形AOCFE=S梯形OABC-S△BEF
=
1
2
(2+3)×1-
1
2
(4-t)2
=-
1
2
t2+4t-
11
2
(3<t<4);

(3)连接QC,OB,
∵AB∥OC,
∴∠BAO+∠AOC=180°,
∵∠AOC=45°,∠OQP=90°,
∴∠QPO=45°,
∵∠QPO+∠QPC=180°,
∴∠BAO=∠QPC,
只要
PC
PQ
=
AO
AB
或者
PC
PQ
=
AB
AO
即可得出以C、P、Q为顶点的三角形与△OAB相似,
得出:3-t=
2
2
×
2
2
t 或3-t=
2
×
2
2
t
解得:t=2或t=
3
2


(4)存在,t1=1,t2=2.
将△OPQ绕着点P顺时针旋转90°,此时Q(t+
t
2
t
2
),O(t,t)
①当点Q在抛物线上时,
t
2
=-
1
3
×(t+
t
2
2+
4
3
×(t+
t
2
),
解得t=2;
②当点O在抛物线上时,t=-
1
3
t2+
4
3
t,
解得:t=1.