早教吧作业答案频道 -->数学-->
当抛物线y=ax2+bx+c与x轴两交点及抛物线上一点P组成以P为直角顶点的直角三角形时,则点P的坐标()A.只与a有关B.只与b有关C.只与c有关D.与a、b、c均有关
题目详情
当抛物线y=ax2+bx+c与x轴两交点及抛物线上一点P组成以P为直角顶点的直角三角形时,则点P的坐标( )
A. 只与a有关
B. 只与b有关
C. 只与c有关
D. 与a、b、c均有关
A. 只与a有关
B. 只与b有关
C. 只与c有关
D. 与a、b、c均有关
▼优质解答
答案和解析
设抛物线y=ax2+bx+c与x轴的交点A(x1,0),B(x2,0),抛物线上一点P(x0,y0).
∵点A、B是抛物线y=ax2+bx+c与x轴交点,
∴x1,x2是方程ax2+bx+c=0的两个根,则由韦达定理x1+x2=-
,x1•x2=
.
过P作PM⊥x轴于M,
∵A(x1,0),B(x2,0),P(x0,y0),
∴PM=|y0|,BM=x2-x0,AM=x0-x1.
∵在△PAB中,∠APB=90°,PM⊥AB,
∴∠PMA=∠PMB=90°,
∴∠PAB+∠PBA=90°,∠PBA+∠BPM=90°,
∴∠BPM=∠PAB,
∴△APM∽△PBM,
∴
=
,
∴PM2=BM×AM,
∴y02=(x2-x0)•(x0-x1),
整理得:x02-(x1+x2)x0+x1•x2+y02=x02+
•x0+
+y02=0,
即x02+
•x0+
+y02=0,
两边同时乘以a,得ax02+b•x0+c+ay02=0,
∵点P是抛物线y=ax2+bx+c上的一点,
所以y0=ax02+bx0+c,
∴将其代入ax02+b•x0+c+ay02=0,得
y0+ay02=0,
即y0•(1+ay0)=0.
∵点P不与点A、B重合,
∴y0≠0,
∴y0=-
,
∴x0=
.
故选D.

∵点A、B是抛物线y=ax2+bx+c与x轴交点,
∴x1,x2是方程ax2+bx+c=0的两个根,则由韦达定理x1+x2=-
b |
a |
c |
a |
过P作PM⊥x轴于M,
∵A(x1,0),B(x2,0),P(x0,y0),
∴PM=|y0|,BM=x2-x0,AM=x0-x1.
∵在△PAB中,∠APB=90°,PM⊥AB,
∴∠PMA=∠PMB=90°,
∴∠PAB+∠PBA=90°,∠PBA+∠BPM=90°,
∴∠BPM=∠PAB,
∴△APM∽△PBM,
∴
PM |
BM |
AM |
PM |
∴PM2=BM×AM,
∴y02=(x2-x0)•(x0-x1),
整理得:x02-(x1+x2)x0+x1•x2+y02=x02+
b |
a |
c |
a |
即x02+
b |
a |
c |
a |
两边同时乘以a,得ax02+b•x0+c+ay02=0,
∵点P是抛物线y=ax2+bx+c上的一点,
所以y0=ax02+bx0+c,
∴将其代入ax02+b•x0+c+ay02=0,得
y0+ay02=0,
即y0•(1+ay0)=0.
∵点P不与点A、B重合,
∴y0≠0,
∴y0=-
1 |
a |
∴x0=
−b±
| ||
2a |
故选D.
看了 当抛物线y=ax2+bx+c...的网友还看了以下:
已知曲线C:y=-x^2+x+2与曲线C'关于点P(a,2a)中心对称,并且C与C’相交与A、B两 2020-04-05 …
已知曲线C:x|x|a2-y|y|b2=1(a>b>0),下列叙述中正确的是()A.垂直于x轴的直 2020-05-15 …
若平面内一条直线l与曲线C有且仅有一个公共点,下列命题正确的是(填序号)①若C是圆,则l与一定相切 2020-05-15 …
已知动点P的轨迹是曲线C,满足点P到点F(-4,0)的距离与它到直线l:x=-1的距离|PQ|之比 2020-05-15 …
为什么l平行于双曲线C的渐近线,与曲线C只有一个公共点 2020-05-15 …
一张白纸上有三条直线,已知直线a平行于直线b,直线b平行于直线c,且直线a与直线b之间的距离为3厘 2020-06-19 …
已知点A(-1,2),B(0,1),动点P满足|PA|=2|PB|.(Ⅰ)若点P的轨迹为曲线C,求 2020-07-15 …
一张白纸上有三条直线,已知直线a平行于直线b,直线b平行于直线c且直线a与直线b之间的距离为3厘米 2020-07-22 …
已知定圆A:(x+1)^2+y^2=16,圆心为A,动圆M过点B(1,0)且和圆A相切,动圆的圆心 2020-07-26 …
过点P(1,0)的直线l与曲线C:+y2=1交于A、B两点过点P还有一直线l′与曲线C交于C、D两 2020-07-30 …