早教吧作业答案频道 -->数学-->
线性代数选择题:设A,B为n阶矩阵,A且B与相似,则().(A)lAl=lBl(B)A与B有相同的特征值和特征向量C、入I-A=入I-B(I为单位矩阵)D、A、B均有n个线性无关的特征向量.求正确答案,最好有解释
题目详情
线性代数选择题:设A,B为n阶矩阵,A且B与相似,则( ). (A)lAl=lBl (B)A与B有相同的特征值和特征向量
C、 入I - A= 入I-B(I为单位矩阵) D、A、B均有n个线性无关的特征向量.求正确答案,最好有解释
C、 入I - A= 入I-B(I为单位矩阵) D、A、B均有n个线性无关的特征向量.求正确答案,最好有解释
▼优质解答
答案和解析
A,B相似即存在可逆矩阵P,使P^(-1)AP=B.
所以|B|=|P^(-1)AP|=|P|^(-1)*|A|*|P|=|A|,所以(A)正确.
多说一点的话,可以类似证明相似矩阵的特征多项式相等|入I - A|=|入I - B|.
所以相似矩阵有相同的特征值.
但是特征向量一般不同.例如BX=入X,也就是P^(-1)APX=入X,左乘P得到APX=入PX.
所以B的特征向量X其实对应到A的特征向量PX,而X自身一般不再是A的特征向量.
反例就不举了,总之(B)的后半是不对的.
(C)直接移项就是A=B,完全没道理.取个行列式还差不多.
(D)是说A,B都能对角化,这个未必成立,因为我们知道不能对角化的矩阵是存在的,但这些矩阵照样可以与别的矩阵相似.不过以下命题是成立的:如果A,B相似且A可对角化,那么B也可对角化.
所以|B|=|P^(-1)AP|=|P|^(-1)*|A|*|P|=|A|,所以(A)正确.
多说一点的话,可以类似证明相似矩阵的特征多项式相等|入I - A|=|入I - B|.
所以相似矩阵有相同的特征值.
但是特征向量一般不同.例如BX=入X,也就是P^(-1)APX=入X,左乘P得到APX=入PX.
所以B的特征向量X其实对应到A的特征向量PX,而X自身一般不再是A的特征向量.
反例就不举了,总之(B)的后半是不对的.
(C)直接移项就是A=B,完全没道理.取个行列式还差不多.
(D)是说A,B都能对角化,这个未必成立,因为我们知道不能对角化的矩阵是存在的,但这些矩阵照样可以与别的矩阵相似.不过以下命题是成立的:如果A,B相似且A可对角化,那么B也可对角化.
看了 线性代数选择题:设A,B为n...的网友还看了以下:
判断下列命题是否正确,并说明理由:(1)空间两条直线可以确定一个平面(2)垂直于同一条直线的两条直 2020-04-25 …
判断下列命题是否正确,并说明理由:(1)空间两条直线可以确定一个平面(2)垂直于同一条直线的两条直 2020-04-25 …
下列说法错误的是()A.直线a∥b,若c与a相交,则b与c也相交B.直线a与b相交,c与a相交,则 2020-06-08 …
直线AB与CD平行,则AB上所有点都在CD同侧这样说对不对咧?顺便判断一下,直线a与b相交,c与a 2020-06-20 …
在同一平面内,直线a与b满足下列条件,写出其对应的位置关系:(1)a与b没有公共点,则a与b;(2 2020-07-25 …
判断题1.向量a与向量b平行,则a与b的方向相同或相反.(错)为什么?2向量AB与向量CD共线,则 2020-08-01 …
高数问题,快来啊~~设向量a,b,c均为非零向量,证明下面结论:1.若三个向量中任意两个不共线,但 2020-08-01 …
用反证法证明:已知,在同一平面内有三条直线a,b,c,a⊥c,b⊥c.求证:a∥b.证明:假设所求 2020-08-01 …
下面结论正确吗?1垂直与同一条直线的两条直线互相平行2若直线L1和L2是异面直线,则与L1,L2都 2020-08-02 …
已知异面直线a与b所成的角是60度,P为空间一点,则过P与a和b所成角为45度的直线有几条?但我觉得 2021-01-11 …