早教吧作业答案频道 -->其他-->
设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在[0,1]上()A.当f′(x)≥0时,f�设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在[0,1]上()A.当f
题目详情
设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在[0,1]上( )A.当f′(x)≥0时,f�
设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在[0,1]上( )
A.当f′(x)≥0时,f(x)≥g(x)
B.当f′(x)≥0时,f(x)≤g(x)
C.当f″(x)≤0时,f(x)≥g(x)
D.当f″(x)≤0时,f(x)≤g(x)
设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在[0,1]上( )
A.当f′(x)≥0时,f(x)≥g(x)
B.当f′(x)≥0时,f(x)≤g(x)
C.当f″(x)≤0时,f(x)≥g(x)
D.当f″(x)≤0时,f(x)≤g(x)
▼优质解答
答案和解析
【详解1】如果对曲线在区间[a,b]上凹凸的定义比较熟悉的话,可以直接做出判断.如果对区间上任意两点x1,x2及常数0≤λ≤1,恒有f((1-λ)x1+λx2)≥(1-λ)f(x1)+λf(x2),则曲线是凸的.
显然此题中x1=0,x2=1,λ=x,则(1-λ)f(x1)+λf(x2)=f(0)(1-x)+f(1)x=g(x),而f((1-λ)x1+λx2)=f(x),
故当f''(x)≤0时,曲线是凸的,即f((1-λ)x1+λx2)≥(1-λ)f(x1)+λf(x2),也就是f(x)≥g(x),
故应该选C
【详解2】如果对曲线在区间[a,b]上凹凸的定义不熟悉的话,可令F(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,则F(0)=F(1)=0,且F''(x)=f''(x),故当f''(x)≤0时,曲线是凸的,从而F(x)≥F(0)=F(1)=0,即F(x)=f(x)-g(x)≥0,也就是f(x)≥g(x),
故应该选:C.
显然此题中x1=0,x2=1,λ=x,则(1-λ)f(x1)+λf(x2)=f(0)(1-x)+f(1)x=g(x),而f((1-λ)x1+λx2)=f(x),
故当f''(x)≤0时,曲线是凸的,即f((1-λ)x1+λx2)≥(1-λ)f(x1)+λf(x2),也就是f(x)≥g(x),
故应该选C
【详解2】如果对曲线在区间[a,b]上凹凸的定义不熟悉的话,可令F(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,则F(0)=F(1)=0,且F''(x)=f''(x),故当f''(x)≤0时,曲线是凸的,从而F(x)≥F(0)=F(1)=0,即F(x)=f(x)-g(x)≥0,也就是f(x)≥g(x),
故应该选:C.
看了 设函数f(x)具有二阶导数,...的网友还看了以下:
在下列说法中,正确的有(1)100的平方根是10(2)﹣9是81的平方根(3)﹣9没有平方根(4) 2020-04-11 …
(2009•卫东区)在17、0.142、14.3%、0..1.4.这四个数中最大的数是,最小的数是 2020-05-02 …
你能用1、5、6、0这四个数字按下列要求组成不同的三位数乘一位数的乘法算式吗?(1)积的末尾没有0 2020-05-13 …
你能用1、5、6、0这四个数字按下列要求组成不同的三位数乘一位数的乘法算式吗?(1)积的末尾没有0 2020-05-13 …
请教一道高数题.对于数列{Xn}={n/(n+1)}(n=1,2,3,...),给定(1)ε=0. 2020-06-11 …
数0.3;-0.10;;π;-3.14;0.101001……中有理数有[]A.1个B.2个C.3个 2020-07-12 …
一个方155元,正方形30CM×30CM等于多少元?不够0.1.按0.1算.要怎样才算的出来够不够 2020-07-18 …
甲公司有关长期股权投资的业务如下:(1)2007年1月3日,以每股买入股价10元的价格购入乙股份有 2020-07-23 …
计算机中的最小存储单位是位,位有0和1两个状态.一个字节由8个位构成.利用固定位数的存储空间每位不 2020-08-03 …
计算机中的最小存储单位是位,位有0和1两个状态.一个字节由8个位构成.利用固定位数的存储空间每位不同 2020-11-07 …